Complete Analytic Vector Fields on Open Unit Ball in $\mathbf{R}^{\mathbf{n}}$

\author{

- Nuri Mohammed bin Youssef*
}

- Abstract:

We shall give complete description of the analytic vector fields on an open unit Euclidean ball, $\mathrm{B}=\{\mathrm{x}:(<\mathrm{x}, \mathrm{x}>)<1\}$ in R^{n} with Vanish on unit sphere $S=\{x:<x, x>=1\}$ in R^{n}.

Keywords : Vector fields, Complete vector field, Analytic mapping,
Analytic function, Cayley trans formation.

سوف نقدم پِّ هذه الورقة البحثيـة وصف كامل لتركيبة المتجهات الحقلية على كرة الوحدة المفتوحة $\{1>\boldsymbol{B}=\{\boldsymbol{x}:(\boldsymbol{x} \cdot \boldsymbol{x})$ ∂B والتي تتتهي على $\mathbf{B} \subset \mathbf{I R}^{\mathbf{N}}$, IRN ${ }_{2}^{2}$

$$
\partial B \subset \mathbf{I R}^{N} \quad \text { IRN } 2
$$

Introduction

In our paper [1] we gave the complete structure of complete polynomial vector fields on open unit ball $B:=\{x:<x, x><\mathbf{1}\}$ in $\mathbf{R}^{\mathbf{n}}$,
where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ our result was the form :

$$
\mathbf{P}(\mathbf{x})=\mathbf{R}(\mathbf{x})-<\mathbf{R}(\mathbf{x}), \mathbf{x}>\mathbf{x}+(\mathbf{1}-<\mathbf{x}, \mathbf{x}>) \mathbf{Q}(\mathbf{x})
$$

for some polynomial mappings $R, Q: R^{n} \rightarrow R^{n}$, In [2] we proved that if $F: \mathbf{R}^{\mathbf{N}} \rightarrow \mathbf{R}$, is a polynomial and $\mathbf{P}: \mathbf{R}^{\mathbf{N}} \rightarrow \mathbf{R}$,be any polynomial such that $\mathbf{P}(M)=0$ and $M \subset \mathbf{R}^{\mathbf{N}}$ then there is a polynomial
$q: R^{N} \rightarrow R$, such that $P=q \cdot F$ when $F(x)=Q_{1}(x) \cdot Q_{2}(x) \ldots . Q_{N}(x)$,

[^0]and Q_{i} are linearly independent affine functions.
In [1] we proved that if $F: R^{\mathbf{N}} \rightarrow \mathbf{R}$, be a polynomial such that $f(x)=0$ for $X \in S$ where $S=\{x:<x, x>=1\}$. Then there exists a polynomial $Q: R^{n} \rightarrow R$, such that $f(x)=(1-<x, x>) Q(x)$.

Our main Result.

Definition : Given any subset K in R^{n}, the set of n tuples and mapping $V: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}^{\mathbf{n}}$, we say that V is complete victor field in K. If for every point $k_{0} \in K$. There exists a curve $X: R \rightarrow K$ such that $X(0)=k_{0}$,
and $\frac{d x(t)}{d t}=V(x(t))$ for all $t \in R$.

CAYLEY TRANSFORM - [2]

Inversion:

$\mathbf{I}: \mathbf{R}^{\mathbf{N}} \backslash\{-\mathrm{e}\} \leftrightarrow \mathbf{R}^{\mathbf{N}} \backslash\{-\mathrm{e}\}$.
$I(x)=-e+4 \frac{x+e}{\|x+e\|^{2}}$

E

Well-known : $\mathbf{I}=\mathbf{I}^{\mathbf{- 1}}$
$\mathrm{I}: \mathrm{S} \backslash\{-\mathrm{e}\} \leftrightarrow \mathrm{E}$, where S is unit sphere and $\mathrm{E}:=\{\mathbf{x}: \mathbf{x}-\mathrm{e} \perp \mathbf{e}\}$
Cayley transform:
$C(x)=I(x)-e=-2 e+4 \frac{x+e}{\|x+e\|^{2}}$
$C: S \backslash\{-\mathbf{e}\} \leftrightarrow \mathbf{E}_{0}=\mathbf{E}-\mathbf{e}_{0}=\{\mathbf{x}: \mathbf{x} \perp \mathbf{e}\}$
$B=\{x:\|x\|<1\} \leftrightarrow H_{0}=\{x:<x . e \gg 0\}$

Theorem 1: Assume that $G \subset \mathbf{R}^{N}$ is an open connected set such that $G \cap E_{0} \neq \varnothing$
And let $\phi: G \leftrightarrow R$ be an analytic function such that $\phi(x)=0$ for all $x \in G \cap E_{0}$. Then $\phi(\mathbf{x})=\mathbf{x}_{1} \Psi(\mathbf{x})$ for some analytic function $\Psi: \mathbf{G} \leftrightarrow \mathbf{R}$ where $\mathbf{x}_{1}=<\mathbf{x} . \mathrm{e}>$ and $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{N}}\right) \in \mathbf{R}^{\mathbf{N}}$.

Proof: Let $E_{0}=\left\{p \in R^{N}: x_{1}(p)=0\right\}$, be a hyper-plane $\boldsymbol{\phi}(\boldsymbol{p})=\mathbf{0}$ for $p \in E_{0}$.

$$
\begin{aligned}
& \phi(p)=\sum_{k=1}^{\infty} \sum_{n_{1}+\ldots+n_{N}=h} a_{n_{1} \ldots n_{N}} x_{1}^{n_{1}}(p) \ldots x_{N}^{n_{N}}(p) \\
& \mathrm{p} \in \mathrm{E}_{0} \Rightarrow x_{1}(p)=0, x_{1}^{n_{1}}(p) \ldots x_{N}^{n_{N}}(p)=0, \text { if } \mathrm{n}_{1}>0 \\
& 0=\phi(p)=\sum_{k=1}^{\infty} \sum_{n_{2}+\ldots+n_{N}=k} a_{n_{0} n_{2} \ldots n_{N}}^{x_{2}^{2}} n_{2}^{2}(p) \ldots x_{N}^{n_{N}}(p) \text {, by assumption. } \\
& p:=\xi_{2} e_{2}+\ldots+\xi_{N} e_{N} \in E_{0}, \xi_{2}, \ldots, \xi_{N} \in R \text {, arbitrary. } \\
& 0=\phi(p)=\sum_{n_{2}+\ldots+n_{N}-k} a_{0 n_{2} \ldots n_{N}} \xi_{2}^{2} \ldots \xi_{N}^{n_{N}} \\
& a_{0 n_{2} \ldots n_{N}}=\frac{\partial^{n_{2}+\ldots+n_{N}} \phi\left(\xi_{2} e_{2}+\ldots+\xi_{N} e_{N}\right)}{\partial x_{2}^{n_{2}} \ldots \partial x_{N}^{n_{N}}} \frac{1}{n_{2}!\ldots n_{N}!}=0 . \\
& a_{0 n_{2} \ldots n_{N}}=0, \forall n_{2}, \cdots, n_{N} . \\
& \phi(p)=\sum_{k=1}^{\infty} \sum_{\substack{n_{1}+\ldots n_{N}>0 \\
n_{1}>0}} a_{n_{1} n_{2} \ldots n_{N}} x_{1}^{n_{1}}(p) \ldots x_{N}^{n_{N}}(p) \\
& =x_{1}(p) \sum_{k=1}^{\infty} \sum_{\substack{n_{1}+\ldots+n_{1} \\
n_{1}>0}} a_{n_{1} n_{2} \ldots n_{N}} x_{1}^{x_{1}-1}(p) \ldots x_{N}^{n_{N}}(p) \\
& =x_{1}(p) \psi(p) . \\
& \psi(p)=\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n_{2}+\ldots+n_{N}=1} a_{n_{1} n_{2} \ldots n_{N}}^{x_{1}^{m}(p) \ldots x_{N}^{n_{N}}(p)}
\end{aligned}
$$

With $m=n_{1}-1$ and $\mathrm{E}=\mathrm{k}-1$
Theorem 2 : Assume $u \subset R^{N}$ is an open connected set such that $-e \notin u$ and $S \cap u 7$ and let $\quad \mathbf{f}: \mathbf{u} \rightarrow \mathbf{R}$ be an analytic function such that $f(x)=0$ for all $x \in S \cap u$.

Then $\mathrm{f}(\mathrm{x})=\left(\|\boldsymbol{x}\|^{2}-\mathbf{1}\right) \mathrm{g}(\mathrm{x})$ for some analytic function $\mathbf{g}: \mathbf{u} \rightarrow \mathbf{R}$.
Proof: Define $\mathrm{G}:=\mathrm{C}(\mathrm{u})$ and $\phi:=\mathrm{f}{ }_{o} \mathrm{C}^{-1}$ is terms of the Cayley transform C. Then $\phi(\boldsymbol{x})=\mathbf{0}$ for all $\mathrm{x} \in \mathrm{C}(\mathbf{u} \cap \mathrm{S})=\mathrm{C}(\mathrm{u} \cap[\mathrm{S} \backslash<\mathbf{0}>])=\mathrm{C}(\mathrm{u}) \cap \mathrm{C}(\mathrm{S} \backslash<\mathbf{0}>)=\mathrm{G} \cap \mathrm{E}_{0} \neq \boldsymbol{\varnothing}$.

Then by the Theorem 1, we can write $\phi(x)=x_{1} \psi(x)$ with an analytic function $\boldsymbol{\psi}: \mathbf{G} \rightarrow \mathbf{R}$. Since $\mathrm{f}=\phi$ o C, we have ,

$$
f(x)=[C(x)]_{1} \psi(C(x))(x \in u)
$$

Let us calculate $[C(x)]_{1}$:

$$
\begin{aligned}
{[\mathrm{C}(\mathrm{x})]_{1} } & =\langle\mathrm{C}(\mathrm{x}), \mathrm{e}\rangle=\left\langle\left.-2 \mathrm{e}+4 \frac{x+e}{\|x+e\|^{2}} \right\rvert\, \mathrm{e}\right\rangle \\
& =-2+4 \frac{x_{1}+1}{\|x+e\|^{2}}=-2+\frac{4 x_{1}+4}{\|x\|^{2}+2<x|e\rangle+\|e\|^{2}} \\
& =-2+\frac{4 x_{1}+4}{\|x\|^{2}+2 x_{1}+1}=\frac{1}{\|x\|^{2}+2 x_{1}+1}\left[-2 \mid x \|^{2}-4 x_{1}-2+4 x_{1}+4\right] \\
& =\frac{2-2\|x\|^{2}}{\|x+e\|^{2}} .
\end{aligned}
$$

Therefore the function

$$
g(x):=-2 \frac{\psi(C(x))}{\|x+e\|^{2}}
$$

Satisfy our requirements.

- References

[1] N.M. Ben yousif, Complete Polynomial Vector fields in unit Ball * e-journal AMAPN.Vol.(20)(1) 2004 Spring.
[2]Cayley Transform Function Analysis / Kosaku Yosida - 1980 .
[3] Cayley's Rational Parametrization of Orthogonal group , Classical groups by , Hermann Weyl / 1946.
[4] L.L.Stacho , A Counter Example Concerning Contractive Projection of Real TB*-triples, Publ . Math , Debrecen, 58(2001), 223-230.
[5] L.L.Stacho, on nonlinear Projections of Vector Fields Josai Mathematics Monographs, JMMI (1999), 99-124 .
[6] N.M.Ben yousif, Complete Polynomial Vector Fields on Simplexes, Electronic Journal of Qualitative Theory of Differential Equations No.5.(2004) . P.p (1-10) .

[^0]: *Associate Professor, Department of Mathematics - Faculty of Sciences - University of Tripoli

