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 Abstract: 

Letbe a complete metric space equipped with a doubling Borel measure 
supporting the p-Poincar inequality.  In this paper, we discuss and study on 
the regularity of -harmonic functions at the boundary points. In particular, 
we show that the -harmonic functions attain their boundary values at all 
regular boundary points. Moreover, the set of irregular points is a small set. 
We also show that the uniform limit of -harmonic functions is  -harmonic. 
In addition, we obtain various convergence results for the - harmonic func-
tions with fixed boundary data, on an increasing sequence of open sets.
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الملخص:

في هذا البحث ندرس استمرارية الدوال التوافقية عند النقاط الحدية  في الفضاءات المترية. 
بالأخص نبين أن الدوال التوافقية مستمرة عند كل النقاط الحدية المنتظمة وأن مجموعة النقاط 
الحدية غير المنتظمة مجموعة صغيرة.  كذلك ندرس بعض مسائل التقارب حيث نبين أن التقارب 

المنتظم للدوال التوافقية هو أيضا دالة توافقية. 

بالإضافة إلى دراسة بعض مسائل التقارب للدوال التوافقية على مجموعات مفتوحة متداخلة.
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abstract: 

Let  𝑋𝑋  be a complete metric space equipped a doubling Borel measure supporting the p-

Poincaré inequality.  In this paper, we discuss the results of a study on the regularity of  𝑝𝑝-

harmonic functions at the boundary points. In particular, we show that the 𝑝𝑝-harmonic 

functions attain their boundary values at all regular boundary points. Moreover, the set of 

irregular points is a small set. We also show that the uniform limit of 𝑝𝑝-harmonic 

functions is  𝑝𝑝-harmonic. In addition, we obtain various convergence results for the 𝑝𝑝- 

harmonic functions with fixed boundary data, on an increasing sequence of open sets. 
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:الملخص  

. بالأخص  نبين ان في الفضاءات المترية  يةعند النقاط الحد دوال التوافقيةاستمرارية ال في هذا البحث ندرس

دية الغير منتظمة مجموعة المنتظمة وان مجموعة النقاط الحية فقية مستمرة عند كل النقاط الحدالدوال التوا

ة. كذلك ندرس بعض مسائل التقارب حيث نبين ان التقارب المنتظم للدوال التوافقية هو أيضا دالة توافقي صغيرة. 

للدوال التوافقية على مجموعات مفتوحة متداخلة.بالإضافة الى دراسة بعض مسائل التقارب   

تقارب.  فضاء متري, متابينة بوينكر, توافقية, انتظام, حدية,الكلمات المفتاحية:   

1.Introduction 

Let  1 < 𝑝𝑝 < ∞  and  𝑋𝑋 = (𝑋𝑋,𝑑𝑑, 𝜇𝜇)  be a complete metric space endowed with a 

metric 𝑑𝑑 and a doubling  Borel measure  𝜇𝜇, i.e., there exists a constant 𝐶𝐶 ≥ 1 such that 

for all balls 𝐵𝐵 = 𝐵𝐵(𝑥𝑥, 𝑟𝑟) ≔ {𝑦𝑦 ∈ 𝑋𝑋:𝑑𝑑(𝑥𝑥,𝑦𝑦) < 𝑟𝑟}  in  𝑋𝑋 we have  

0 < 𝜇𝜇(2𝐵𝐵) < 𝐶𝐶 𝜇𝜇(𝐵𝐵) < ∞, 
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Let  1 < 𝑝𝑝 < ∞  and  𝑋𝑋 = (𝑋𝑋,𝑑𝑑, 𝜇𝜇)  be a complete metric space endowed with a 

metric 𝑑𝑑 and a doubling  Borel measure  𝜇𝜇, i.e., there exists a constant 𝐶𝐶 ≥ 1 such that 

for all balls 𝐵𝐵 = 𝐵𝐵(𝑥𝑥, 𝑟𝑟) ≔ {𝑦𝑦 ∈ 𝑋𝑋:𝑑𝑑(𝑥𝑥,𝑦𝑦) < 𝑟𝑟}  in  𝑋𝑋 we have  

0 < 𝜇𝜇(2𝐵𝐵) < 𝐶𝐶 𝜇𝜇(𝐵𝐵) < ∞, 

where 2𝐵𝐵 = 𝐵𝐵(𝑥𝑥, 2𝑟𝑟). 

The doubling property implies that 𝑋𝑋 is complete if and only if 𝑋𝑋 is proper, i.e., 

closed and bounded sets are compact. 

In this paper we study the boundary regularity and some convergence problems for 

the 𝑝𝑝-harmonic functions on certain metric spaces.  In 𝑅𝑅𝑛𝑛,  the classical 𝑝𝑝-harmonic 

function is the solution of the 𝑝𝑝-Laplace equation, div(|∇𝑢𝑢|𝑝𝑝−2∇𝑢𝑢) = 0, with a 

prescribed boundary values. An equivalent variational formulation of this problem is 

the minimization problem 

min∫ |∇𝑢𝑢|𝑝𝑝 𝑑𝑑𝑥𝑥 .                                                           (1) 

 In a metric measure space we have no partial derivatives, i.e., no gradient but we 

have a substitute of the modulus for  the usual  gradient called upper gradient that was 

introduced by Heinonen-Koskela (1). The upper gradient enables us to define and 

study Sobolev type spaces in metric spaces. There are many notations of Sobolev 

spaces in metric spaces, see for example Cheeger (2) and Shanmugalingam (3), (4). 

We shall follow the definition of  Shanmugalingam (3), where the Sobolev space 

𝑁𝑁1,𝑝𝑝(𝑋𝑋) (called the Newtonian space)  was defined as the collection of all  𝑝𝑝-

integrable functions with 𝑝𝑝-integrable upper gradients, see also Farnana (5). 

The 𝑝𝑝-harmonic function in metric spaces is defined to be the continuous minimizer   

of  (1), with |∇𝑢𝑢|  replaced by the minimal upper gradient, whose existence and 

uniqueness  was proved in Shanmugalingam (4).  The  𝑝𝑝-harmonic functions were 

studied e.g., in Shanmugalingam (4), Björn–Björn (6),  Björn-Björn-Shanmugalingam (7) 

and  Farnana (8). 

This paper is organized as follows. In Section 2, we define Newtonian spaces, the 

Sobolev type spaces considered in metric spaces, and give some of their properties. 

We also define the 𝑝𝑝-harmonic functions with a Newtonian boundary values whose 

existence and uniqueness is provided by Shanmugalingam (4). It has been shown in 

Kinnunen-Shanmugalingam (9) that the 𝑝𝑝-harmonic functions satisfy the strong 
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maximum principle, the Harnack’s inequality and that they are locally Hölder 

continuous.   

In Section 3, we present some convergence results for the 𝑝𝑝-harmonic functions. In 

particular, we show that the uniform limit of a sequence of 𝑝𝑝-harmonic functions is 

also 𝑝𝑝-harmonic. Moreover, we consider an increasing sequence of open sets Ω𝑗𝑗 
whose union is Ω. We analyze the convergence of the 𝑝𝑝-harmonic functions in Ω𝑗𝑗 with 

fixed boundary value 𝑓𝑓.  

In Section 4, we consider the  𝑝𝑝-harmonic functions with continuous boundary values. 

Moreover, we define and study the regular boundary points and show that the 𝑝𝑝-

harmonic function attains its boundary values at all regular boundary points.  

Furthermore, it has been shown that most of the boundary points are regular and that 

the set of irregular points is a small set. 

2. Notations and preliminaries 

A nonnegative Borel function 𝑔𝑔 on 𝑋𝑋 is said to be an upper gradient of an extended 

real–valued function 𝑓𝑓 on  𝑋𝑋  if  for  all  rectifiable curves  𝛾𝛾 ∶  [0, 𝑙𝑙𝛾𝛾]  →  𝑋𝑋  

parameterized by the arc length 𝑑𝑑𝑑𝑑, we have 

 

|𝑓𝑓(𝛾𝛾(0)) − 𝑓𝑓(𝛾𝛾(𝑙𝑙𝛾𝛾))| ≤ ∫ 𝑔𝑔 𝑑𝑑𝑑𝑑                                                       (2)𝛾𝛾                                                

whenever both 𝑓𝑓 (𝛾𝛾(0))  and  𝑓𝑓 (𝛾𝛾(𝑙𝑙𝛾𝛾)) are finite, and ∫ 𝑔𝑔𝛾𝛾 𝑑𝑑𝑑𝑑 = ∞ otherwise. If  𝑔𝑔 

is a nonnegative measurable function on  𝑋𝑋 and if  (2) holds for 𝑝𝑝-almost every curve 

then 𝑔𝑔 is a 𝑝𝑝-weak upper gradient of  𝑓𝑓.  

By saying that (2) holds for 𝑝𝑝-almost every curve we mean that it fails only for a 

curve family with zero 𝑝𝑝-modulus, see Definition 2.1 in Shanmugalingam (3).   

The upper gradient in not unique. In particular, from (2) every Borel function greater 

than 𝑔𝑔 will be another upper gradient of  𝑓𝑓.  However, if  𝑓𝑓 has an upper gradient in  

𝑳𝑳𝑝𝑝(𝑋𝑋), then it has a unique  minimal p-weak upper gradient 𝑔𝑔𝑓𝑓 ∈ 𝑳𝑳𝑝𝑝(𝑋𝑋) in the sense 



40

AL-JAMEAI Issue 34 - Fall 2021

that for every p-weak upper gradient 𝑔𝑔 ∈ 𝑳𝑳𝑝𝑝(𝑋𝑋) of 𝑓𝑓 we have 𝑔𝑔𝑓𝑓 ≤ 𝑔𝑔 a.e., see 

Corollary 3.7 in Shanmugalingam (4). 

 The operation of taking an upper gradient is not linear. However, we have the 

following useful property. If 𝑎𝑎, 𝑏𝑏 ∈ 𝑹𝑹 and 𝑔𝑔1,𝑔𝑔2  are upper gradients of 𝑢𝑢1,𝑢𝑢2, 

respectively. Then |𝑎𝑎|𝑔𝑔1 + |𝑏𝑏|𝑔𝑔2 is an upper gradient of  𝑎𝑎𝑢𝑢1 + 𝑏𝑏𝑢𝑢2.  

In Shanmugalingam (3), upper gradients have been used to define Sobolev type 

spaces on metric spaces. We will use the following equivalent definition. 

Definition 2.1 

Let 𝑢𝑢 ∈ 𝑳𝑳𝑝𝑝(𝑋𝑋),  then we define 

∥ 𝑢𝑢 ∥𝑁𝑁1,𝑝𝑝(𝑋𝑋)= (∫ |𝑢𝑢|𝑝𝑝 𝑑𝑑𝑑𝑑 + ∫ 𝑔𝑔𝑢𝑢𝑝𝑝 𝑑𝑑𝑑𝑑
𝑋𝑋𝑋𝑋

)
1/𝑝𝑝

 

where 𝑔𝑔𝑢𝑢 is the minimal 𝑝𝑝-weak upper gradient of 𝑢𝑢. The Newtonian space on 𝑋𝑋 is 

the quotient space 

𝑁𝑁1,𝑝𝑝(𝑋𝑋) = {𝑢𝑢: ∥ 𝑢𝑢 ∥𝑁𝑁1,𝑝𝑝 (𝑋𝑋)< ∞}/~, 

where 𝑢𝑢~𝑣𝑣 if and only if  ∥ 𝑢𝑢 − 𝑣𝑣 ∥𝑁𝑁1,𝑝𝑝(𝑋𝑋) =  0. 

The space 𝑁𝑁1,𝑝𝑝(𝑋𝑋) is a Banach space and a lattice, see Theorem 3.7 and p.249 in 

Shanmugalingam (3). 

Definition 2.2   

The Capacity of a set   𝐸𝐸 ⊂ 𝑋𝑋 is defined by 

𝐶𝐶𝑝𝑝(𝐸𝐸) = inf
𝑢𝑢
∥ 𝑢𝑢 ∥𝑁𝑁1,𝑝𝑝(𝑋𝑋) 

where the infimnm is taken over all 𝑢𝑢 ∈ 𝑁𝑁1,𝑝𝑝(𝑋𝑋) such that 𝑢𝑢 ≥ 1 on 𝐸𝐸. 
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We say that a property holds quasieverywhere (q.e.) in 𝑋𝑋, if it holds everywhere 

except a set of capacity zero.  Newtonian functions are well defined up to sets of 

capacity zero,  i.e.  if  𝑢𝑢, 𝑣𝑣 ∈ 𝑁𝑁1,𝑝𝑝(𝑋𝑋)  then 𝑢𝑢 ~ 𝑣𝑣  if and only if 𝑢𝑢 = 𝑣𝑣 q.e. 

Moreover, Corollary 3.3 in Shanmugalingam (3) shows that if 𝑢𝑢, 𝑣𝑣 ∈ 𝑁𝑁1,𝑝𝑝(𝑋𝑋) and 

𝑢𝑢 = 𝑣𝑣  a.e., then 𝑢𝑢 = 𝑣𝑣  q.e. in  𝑋𝑋. 

From now on we assume that 𝑋𝑋 supports a 𝑝𝑝–Poincaré inequality, i.e., there exist 

constants  𝐶𝐶 >  0 and  𝜆𝜆 ≥ 1 such that for all balls 𝐵𝐵(𝑥𝑥, 𝑟𝑟)  in  𝑋𝑋,  all integrable 

functions 𝑢𝑢 on 𝑋𝑋 and all upper gradients 𝑔𝑔 of  𝑢𝑢 we have 

 

1
μ(𝐵𝐵)∫ |𝑢𝑢 − 𝑢𝑢B(𝑥𝑥,𝑟𝑟)|

𝐵𝐵(𝑥𝑥,𝑟𝑟)
 𝑑𝑑𝑑𝑑 ≤ 𝐶𝐶 𝑟𝑟 ( 1

𝑑𝑑(𝐵𝐵)∫ 𝑔𝑔𝑝𝑝 𝑑𝑑𝑑𝑑
𝐵𝐵(𝑥𝑥,𝜆𝜆𝑟𝑟)

)
1/𝑝𝑝

, 

 

Under the above assumptions, every function 𝑢𝑢 ∈ 𝑁𝑁1,𝑝𝑝(𝑋𝑋) is a quasicontinuous, i.e., 

for every 𝜀𝜀 > 0 there is an open set 𝐺𝐺 ⊂ 𝑋𝑋 such that 𝐶𝐶𝑝𝑝(𝐺𝐺) < 𝜀𝜀 and 𝑢𝑢|𝑋𝑋\𝐺𝐺 is 

continuous, see Theorem 1.1 in Björn-Björn-Shanmugalingam (10). Moreover, when 

restricted to 𝑅𝑅𝑛𝑛 the Newtonian space 𝑁𝑁1,𝑝𝑝(𝑅𝑅𝑛𝑛) is the refined Sobolev space 

𝑊𝑊1,𝑝𝑝(𝑅𝑅𝑛𝑛). 

For Ω ⊂ 𝑋𝑋 open we define the space 𝑁𝑁1,𝑝𝑝(Ω) with respect to the restrictions of the 

metric 𝑑𝑑 and the measure 𝑑𝑑 to  Ω. It is well known in the field that the restriction to Ω 

of a minimal 𝑝𝑝-weak upper gradient in 𝑋𝑋 remains minimal with respect to Ω, see 

Björn-Björn (11). 

A function 𝑢𝑢 is said to belong to the local Newtonian space 𝑁𝑁loc
1,𝑝𝑝(Ω)  if  𝑢𝑢 ∈ 𝑁𝑁1,𝑝𝑝(G) 

for every 𝐺𝐺 ⋐ Ω, where by 𝐺𝐺 ⋐ Ω  we mean that the closure of  𝐺𝐺 is a compact subset 

of  Ω. 

To be able to compare the boundary values of  Newtonian functions, we need to 

define a Newtonian space with zero boundary values outside of  Ω  as follows 
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𝑁𝑁0
1,𝑝𝑝(Ω) = {𝑓𝑓|Ω: 𝑓𝑓 ∈ 𝑁𝑁1,𝑝𝑝(𝑋𝑋)  and   𝑓𝑓 = 0   q. e.  in   𝑋𝑋\Ω }. 

Under our assumptions, Lipschitz functions with compact support are dense in 

𝑁𝑁0
1,𝑝𝑝(Ω), see Shanmugalingam (4). Moreover, the proof of this result in Björn–Björn 

[11] shows that if  0 < 𝑢𝑢 < 𝑁𝑁0
1,𝑝𝑝(Ω), then we can choose the Lipschitz 

approximations to be nonnegative and pointwise smaller than the function 𝑢𝑢. 

 Definition 2.3  

Suppose that  Ω ⊂ 𝑋𝑋  is open and bounded.  A function  𝑢𝑢 ∈ 𝑁𝑁1,𝑝𝑝(Ω)  is a minimizer 

in Ω  if  for every function  𝑣𝑣 ∈ 𝑁𝑁1,𝑝𝑝(Ω)  with 𝑢𝑢 − 𝑣𝑣 ∈ 𝑁𝑁0
1,𝑝𝑝(Ω),  we have  

∫ 𝑔𝑔𝑢𝑢 
𝑝𝑝  𝑑𝑑𝑑𝑑 ≤ ∫ 𝑔𝑔𝑣𝑣𝑝𝑝

Ω
 𝑑𝑑𝑑𝑑,

Ω
 

where 𝑔𝑔𝑢𝑢  and 𝑔𝑔𝑣𝑣 are the minimal p-weak upper gradients of  𝑢𝑢 and  𝑣𝑣 respectively. 

We also say that  a function 𝑢𝑢 is p-harmonic if  it is a continuous minimizer. 

If 𝑢𝑢 is a minimizer (or p-harmonic) and 𝛼𝛼,𝛽𝛽 ∈ 𝑹𝑹, then 𝛼𝛼𝑢𝑢 + 𝛽𝛽 is a minimizer (or p-

harmonic). Note, however, that the sum of two minimizers (or  p-harmonic) functions 

need not to be a  p-harmonic function and thus the theory is not linear. We instead 

have the minimum of two  p-harmonic functions is a  p-harmonic. 

 In Shanmugalingam (4)  it was shown that there exists a unique minimizer for every 

𝑢𝑢 ∈ 𝑁𝑁1,𝑝𝑝(Ω), see also Theorem 4.2 in Farnana (8).  

Theorem 2.4   

Assume that Ω  is open and bounded such that 𝐶𝐶𝑝𝑝(𝑋𝑋 \Ω) > 0.  Let  𝑓𝑓 ∈ 𝑁𝑁1,𝑝𝑝(Ω),  then 

there exists a unique minimizer 𝑢𝑢  (up to set of capacity zero) with  𝑢𝑢 − 𝑓𝑓 ∈ 𝑁𝑁0
1,𝑝𝑝(Ω).  

Definition 2.5 

By the  p-harmonic extension of  𝑓𝑓 ∈ 𝑁𝑁1,𝑝𝑝(Ω)  to  Ω  we mean the continuous 

minimizer with boundary values  𝑓𝑓  and will be denoted by 𝐻𝐻𝑓𝑓. 
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Note that, −𝐻𝐻𝐻𝐻 will be the p-harmonic extension of −𝐻𝐻 ∈ 𝑁𝑁1,𝑝𝑝(Ω)  to  Ω.  

Lemma 2.6 (comparison principle)  

Assume that Ω is open bounded and that 𝐶𝐶𝑝𝑝(𝑋𝑋 \Ω) > 0. Let  𝐻𝐻1 ,𝐻𝐻2 ∈ 𝑁𝑁1,𝑝𝑝(X) be such 

that 𝐻𝐻1 ≤ 𝐻𝐻2 q.e. in  𝜕𝜕𝜕𝜕. Then 𝐻𝐻𝐻𝐻1 ≤ 𝐻𝐻𝐻𝐻2 in Ω. 

The 𝑝𝑝-harmonic functions satisfy many useful properties. In particular, they are 

locally Hölder continuous and satisfy the maximum principle: If 𝑢𝑢 attains its 

maximum (or minimum) in Ω, then it is a constant. Moreover, nonnegative 𝑝𝑝-

harmonic functions satisfy the Harnack inequality i.e., sup𝐾𝐾 𝑢𝑢 ≤  𝐶𝐶 inf
𝐾𝐾

 𝑢𝑢  for  all 

compact 𝐾𝐾 ⊂ Ω, see Kinnunen-Shanmugalingam (9). 

3. Convergence results for p-harmonic functions. 

In this section, we study various convergence problems for 𝑝𝑝-harmonic functions, by 

letting the boundary values converge in some sense and show that the corresponding  

𝑝𝑝-harmonic extensions will converge as well. Moreover, we consider an increasing 

sequence of open sets Ω𝑗𝑗 whose union is Ω  and fix the boundary values 𝐻𝐻.  We 

analyze the convergence of the  𝑝𝑝-harmonic extensions in Ω𝑗𝑗 to the 𝑝𝑝-harmonic 

extensions in Ω. 

The following theorem shows that the uniform limit of  𝑝𝑝-harmonic functions is also 

𝑝𝑝-harmonic. It is from  Kinnunen- Shanmugalingam (9). 

Theorem 3.1 

Let  {𝑢𝑢𝑗𝑗}𝑗𝑗=1∞   be a sequence of 𝑝𝑝-harmonic functions that converges locally uniformly  

in  Ω. Then 𝑢𝑢 is 𝑝𝑝-harmonic. 

The following theorem is from Shanmugalingam (12). 

Theorem 3.2 (Harnack's convergence theorem)  
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Let Ω be connected and let  {𝑢𝑢𝑗𝑗}𝑗𝑗=1∞  be a sequence of nonnegative 𝑝𝑝-harmonic  

functions in Ω.  Assume that there is some 𝑥𝑥 ∈ Ω such that 𝑢𝑢𝑗𝑗(𝑥𝑥) ≤ 𝐶𝐶,  𝑗𝑗 = 1,2,⋯,  
for some constant  𝐶𝐶. Then a subsequence of  {𝑢𝑢𝑗𝑗}𝑗𝑗=1∞  converges locally uniformly to a 

𝑝𝑝-harmonic  in Ω. 

The following result is a special case of Theorem 3.3 from Farnana (13) and also  a 

special case of  Theorem 10.18 in Björn-Björn (11). 

Theorem 3.3  

Let  {𝑓𝑓𝑗𝑗}𝑗𝑗=1∞   be a q.e. decreasing sequence such that 𝑓𝑓𝑗𝑗 ⟶ 𝑓𝑓 in 𝑁𝑁1,𝑝𝑝(Ω) as 𝑗𝑗 ⟶ ∞. 

Then 𝐻𝐻𝑓𝑓𝑗𝑗 decreases to 𝐻𝐻𝑓𝑓  locally uniformly in Ω. 

Remark 3.4  

Note that, Theorem 3.3 also holds if  {𝑓𝑓𝑗𝑗}𝑗𝑗=1∞  is a  q.e. increasing sequence as {−𝑓𝑓𝑗𝑗}𝑗𝑗=1∞   

will a q.e. decreasing sequence  of 𝑝𝑝-harmonic functions which implies that  −𝐻𝐻𝑓𝑓𝑗𝑗  

decreases  q.e. to –𝐻𝐻𝑓𝑓 locally uniformly in Ω. Hence  𝐻𝐻𝑓𝑓𝑗𝑗 increases q.e. to  𝐻𝐻𝑓𝑓 

locally uniformly in Ω. 

In fact Theorem 3 in Kinnunen-Marola-Martio (14) shows that if  {𝑓𝑓𝑗𝑗}𝑗𝑗=1∞  is a 

bounded sequence in 𝑁𝑁1,𝑝𝑝(Ω) and  𝑓𝑓𝑗𝑗 ⟶ 𝑓𝑓 q.e.  in  Ω (not necessarily monotone), as 

𝑗𝑗 ⟶ ∞, then  𝐻𝐻𝑓𝑓𝑗𝑗 ⟶ 𝐻𝐻𝑓𝑓  locally uniformly in  Ω, as 𝑗𝑗 ⟶ ∞. 

Theorem 3.5 (Corollary 9.38 in (11)) 

Assume that Ω is connected. Let {𝑢𝑢𝑗𝑗}𝑗𝑗=1∞  be an increasing sequence of 𝑝𝑝-harmonic 

functions in Ω such that 𝑢𝑢 = lim𝑗𝑗⟶∞ 𝑢𝑢𝑗𝑗  is not identically ∞. Then 𝑢𝑢 is 𝑝𝑝-harmonic in 

Ω. 

Theorem 3.6 (Theorem 9.21 in (11)) 

Let  Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ ⋯ ⊂ Ω = ⋃ Ω𝑗𝑗∞
𝑗𝑗=1 . Then 𝑢𝑢 is 𝑝𝑝-harmonic in Ω  if and only if  it 

is 𝑝𝑝-harmonic in Ω𝑗𝑗  for 𝑗𝑗 = 1,2,⋯.  
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Theorem 3.7 (Theorem 9.36 in (11)) 

Let  Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ ⋯ ⊂ Ω = ⋃ Ω𝑗𝑗∞
𝑗𝑗=1  and let 𝑢𝑢𝑗𝑗  be  𝑝𝑝-harmonic in Ωj,  𝑗𝑗 = 1,2,⋯.  

If 𝑢𝑢𝑗𝑗 ⟶ 𝑢𝑢  locally uniformly in Ω, then 𝑢𝑢 is 𝑝𝑝-harmonic in Ω. 

4. Boundary regularity for 𝒑𝒑-harmonic functions. 

In this section, we follow Björn-Björn-Shanmugalingam (7) and extend the 

definition of 𝑝𝑝-harmonic extension for continuous boundary functions.  

The following lemma shows that Lipschitz functions on a set can be extended to a 

Lipschitz on a larger set, see Lemma 5.2 in Björn-Björn (11) or Theorem 6.2 in  

Heinonen (15). 

Lemma 4.1  

Let 𝐸𝐸 ⊂ 𝑋𝑋 and let 𝑓𝑓:𝐸𝐸 ⟶ 𝑅𝑅 be 𝐿𝐿-Lipschitz. Then there exist two 𝐿𝐿-Lipschitz  

functions 𝑓𝑓,̅  𝑓𝑓:𝑋𝑋 ⟶ 𝑅𝑅 defined by 

𝑓𝑓(𝑥𝑥): = inf
𝑦𝑦∈𝐸𝐸

(𝑓𝑓(𝑦𝑦) + 𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦))       and      𝑓𝑓(𝑥𝑥): = sup
𝑦𝑦∈𝐸𝐸

(𝑓𝑓(𝑦𝑦) + 𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦)),  

such that  𝑓𝑓 ≤ 𝑓𝑓   in  𝑋𝑋  and that  𝑓𝑓 = 𝑓𝑓 = 𝑓𝑓  on  𝐸𝐸. 

If 𝑓𝑓 ∈ Lip(𝑋𝑋) ⊂ 𝑁𝑁1,𝑝𝑝(𝑋𝑋), then 𝐻𝐻𝑓𝑓  is well defined. As for  𝑓𝑓 ∈ Lip(𝜕𝜕Ω)  the above 

lemma shows that 𝑓𝑓 can be extended to a Lipschitz function in  𝑋𝑋. This means that,  

we can define the 𝑝𝑝-harmonic extension for a function  𝑓𝑓 ∈ Lip(𝜕𝜕Ω) and the  𝐻𝐻𝑓𝑓 will 

be independent of the choice of the extension of 𝑓𝑓, as follows: If  𝑓𝑓 ∈ Lip(𝜕𝜕Ω),  

Lemma 4.1 shows that we can  extended   𝑓𝑓 to a Lipschitz function on 𝑋𝑋. If  𝑓𝑓1,𝑓𝑓2  are 

two extensions of  𝑓𝑓  then 𝑓𝑓1 = 𝑓𝑓2 on 𝜕𝜕Ω.  The comparison Lemma 2.6 shows that 

𝐻𝐻𝑓𝑓1 = 𝐻𝐻𝑓𝑓2  in  Ω.    

If  𝑓𝑓 ∈ 𝐶𝐶(𝜕𝜕Ω),  then it can be approximated uniformly by Lipschitz functions, by the 

Stone-Weierstrass theorem in Rudin (16),  p.122  

Definition 4.2 
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Let 𝑓𝑓 ∈ 𝐶𝐶(𝜕𝜕Ω),  define  𝐻𝐻𝑓𝑓:Ω ⟶ 𝑹𝑹 by 

𝐻𝐻𝑓𝑓(𝑥𝑥) = sup
Lip(𝜕𝜕Ω)∋𝜑𝜑≤𝑓𝑓

𝐻𝐻𝐻𝐻(𝑥𝑥),         𝑥𝑥 ∈ Ω 

The following lemma from Björn-Björn-Shanmugalingam(7). 

Lemma 4.3 

Let  𝑓𝑓 ∈ 𝐶𝐶(𝜕𝜕Ω). Then 𝐻𝐻𝑓𝑓 is  p-harmonic in Ω and  

𝐻𝐻𝑓𝑓(𝑥𝑥) = infLip(𝜕𝜕Ω)∋𝜑𝜑≤𝑓𝑓 𝐻𝐻𝐻𝐻(𝑥𝑥) = lim𝑗𝑗⟶∞ 𝐻𝐻𝑓𝑓𝑗𝑗(Ω)      𝑥𝑥 ∈ Ω, 

for every sequence {𝑓𝑓𝑗𝑗}𝑗𝑗=1
∞  of functions in Lip(∂Ω) that converges uniformly to 𝑓𝑓. 

Proof.  

Let 𝑓𝑓𝑗𝑗 ∈ Lip(𝜕𝜕Ω) be such that |𝑓𝑓(𝑥𝑥) − 𝑓𝑓𝑗𝑗(𝑥𝑥)| < 1/𝑗𝑗 for all 𝑥𝑥 ∈ 𝜕𝜕Ω and 𝑗𝑗 = 1,2, …. 

Then |𝑓𝑓𝑗𝑗′(𝑥𝑥) − 𝑓𝑓𝑗𝑗′′(𝑥𝑥)| ≤ 2/𝑗𝑗 for all 𝑥𝑥 ∈ 𝜕𝜕Ω and 𝑗𝑗′, 𝑗𝑗′′ ≥ 𝑗𝑗. The comparison principle 

implies that for all 𝑥𝑥 ∈ Ω, 

𝐻𝐻𝑓𝑓𝑗𝑗′(𝑥𝑥) − 2
𝑗𝑗  ≤  𝐻𝐻𝑓𝑓𝑗𝑗′′(𝑥𝑥) ≤  𝐻𝐻𝑓𝑓𝑗𝑗′(𝑥𝑥) + 2

𝑗𝑗 , 

which shows that {𝐻𝐻𝑓𝑓𝑗𝑗(𝑥𝑥)}𝑗𝑗=1∞  is a Cauchy sequence in Ω.  Hence the limitℎ(𝑥𝑥) ≔
lim𝑗𝑗⟶∞ 𝐻𝐻𝑓𝑓𝑗𝑗(𝑥𝑥) exists and by Theorem 3.7  is a 𝑝𝑝-harmonic in Ω. Using the 

comparing principle to the inequality 𝑓𝑓𝑗𝑗 −
1
𝑗𝑗 < 𝑓𝑓 < 𝑓𝑓𝑗𝑗 + 1

𝑗𝑗  implies that 

ℎ(𝑥𝑥) = lim
𝑗𝑗⟶∞

𝐻𝐻(𝑓𝑓𝑗𝑗 − 1/𝑗𝑗)(𝑥𝑥)     
≤ sup

Lip(𝜕𝜕Ω)∋𝜑𝜑≤𝑓𝑓
𝐻𝐻𝐻𝐻(𝑥𝑥) ≤ inf

Lip(𝜕𝜕Ω)∋𝜑𝜑≤𝑓𝑓
𝐻𝐻𝐻𝐻(𝑥𝑥)

≤ lim
𝑗𝑗⟶∞

𝐻𝐻(𝑓𝑓𝑗𝑗 + 1/𝑗𝑗)(𝑥𝑥) = ℎ(𝑥𝑥)       

which finishes the proof. 

The following lemma extends the comparison principle Lemma 2.6 to 𝑝𝑝-harmonic 
extensions of functions in 𝐶𝐶(𝜕𝜕Ω).   
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Lemma 4.4 (Comparison principle). 

Let  Ω is bounded and that 𝐶𝐶𝑝𝑝(𝑋𝑋 \Ω) > 0. Let  𝑓𝑓1 ,𝑓𝑓2 ∈ 𝐶𝐶(𝜕𝜕Ω) be such that 𝑓𝑓1 ≤ 𝑓𝑓2 
q.e. in  𝜕𝜕𝜕𝜕. Then 𝐻𝐻𝑓𝑓1 ≤ 𝐻𝐻𝑓𝑓2  in  Ω.  

We should mention here that the harmonic extension  𝐻𝐻𝑓𝑓 of  𝑓𝑓  to Ω  is continuous 
only in Ω, and we may not have continuity of  𝐻𝐻𝑓𝑓 up to the boundary. This will 
depend on the boundary points. 

Definition 4.5   

Let Ω  be bounded with  𝐶𝐶𝑝𝑝(𝑋𝑋 \Ω) > 0.  A point 𝑥𝑥0 ∈ ∂Ω  is  regular if 

lim
Ω∋𝑥𝑥→𝑥𝑥0

𝐻𝐻𝑓𝑓(𝑥𝑥) = 𝑓𝑓 (𝑥𝑥0)        for all   𝑓𝑓 ∈ 𝐶𝐶(𝜕𝜕Ω). 

If  all  𝑥𝑥0 ∈ Ω  are  regular, then Ω is regular. We also say that 𝑥𝑥0 ∈ ∂Ω  is irregular if 
it not regular. 

The following property is from Björn-Björn-Shanmugalingam (7).  It shows that 
the set of irregular points  is a small set and that  most of the boundary points are 
regular.  

Lemma 4.6 (The Kellogg property). 

 Let 𝐼𝐼𝑝𝑝 ⊂ 𝜕𝜕Ω be the set of all irregular points. Then 𝐶𝐶𝑝𝑝(𝐼𝐼𝑝𝑝) = 0. 

The following result shows that the 𝑝𝑝-harmonic extension of a function 𝑓𝑓 attains its 
boundary point at all regular points. 

Theorem 4.7 (Theorem 3.9 in (7)) 

If   𝑓𝑓 ∈ 𝐶𝐶(𝜕𝜕Ω)  and 𝑥𝑥0 ∈ 𝜕𝜕Ω is a regular boundary point, then  

lim
𝑥𝑥⟶𝑥𝑥0

𝐻𝐻𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥0) 

The following result from Björn-Björn-Shanmugalingam (7) shows that the  𝑝𝑝-

harmonic extension of a function 𝑓𝑓 is the unique 𝑝𝑝-harmonic function that attains the 

boundary points. 

Proposition 4.8 

Let 𝑓𝑓 ∈ 𝐶𝐶(𝜕𝜕Ω) assume that Ω is a regular domain. If  𝑢𝑢 is 𝑝𝑝-harmonic function in Ω 
such that lim𝑥𝑥⟶𝑥𝑥0 𝑢𝑢(𝑥𝑥) = 𝑓𝑓(𝑥𝑥0)  for all 𝑥𝑥0 ∈ 𝜕𝜕Ω. Then 𝑢𝑢 = 𝐻𝐻𝑓𝑓  in Ω. 
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Proof 

Let 𝜀𝜀 > 0 and for every 𝑥𝑥0 ∈ 𝜕𝜕Ω find 𝑟𝑟𝑥𝑥0 ∈ (0, 𝜀𝜀) such that |𝑢𝑢(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)| < 𝜀𝜀  and 
|𝐻𝐻𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)| < 𝜀𝜀 whenever 𝑥𝑥 ∈ 𝐵𝐵(𝑥𝑥0, 𝑟𝑟𝑥𝑥0) ∩ Ω. By compactness, we have 
𝜕𝜕𝜕𝜕 ⊂ ⋃𝑗𝑗=1

𝑛𝑛 𝐵𝐵𝑗𝑗 with 𝐵𝐵𝑗𝑗 = 𝐵𝐵(𝑥𝑥𝑗𝑗 , 𝑟𝑟𝑥𝑥𝑗𝑗). Let  Ω′ = Ω\⋃𝑗𝑗=1𝑛𝑛 𝐵𝐵�̅�𝑗 and choose a function 
𝜂𝜂 ∈ Lip𝑐𝑐(𝜕𝜕), so that 𝜂𝜂 = 1 on  Ω′. Then 𝜂𝜂 𝑢𝑢 ∈ 𝑁𝑁1,𝑝𝑝(𝑋𝑋) and 𝜂𝜂 𝐻𝐻𝑓𝑓 ∈ 𝑁𝑁1,𝑝𝑝(𝑋𝑋) are both 
𝑝𝑝-harmonic in Ω′, and furthermore, on  𝜕𝜕Ω′ they satisfy the condition  

𝜂𝜂 𝐻𝐻𝑓𝑓 − 2𝜀𝜀 ≤ 𝜂𝜂 𝑢𝑢 ≤ 𝜂𝜂 𝐻𝐻𝑓𝑓 + 2𝜀𝜀. 

Now the comparing principle and the fact that 𝜂𝜂 = 1 on  Ω′ imply that 

𝜂𝜂 𝐻𝐻𝑓𝑓 − 2𝜀𝜀 ≤ 𝜂𝜂 𝑢𝑢 ≤ 𝜂𝜂 𝐻𝐻𝑓𝑓 + 2𝜀𝜀,  

in  Ω′. Letting   𝜀𝜀 ⟶ 0 we get 𝑢𝑢 = 𝐻𝐻𝑓𝑓 in Ω. 

Theorem 4.9 

For every 𝑓𝑓 ∈ 𝐶𝐶(𝜕𝜕Ω) there exists a unique bounded p-harmonic function 𝐻𝐻𝑓𝑓 in Ω 
such that  

lim
Ω∋𝑥𝑥→𝑥𝑥0

𝐻𝐻𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥0)           for  q. e.   𝑥𝑥0 ∈ 𝜕𝜕Ω. 

5. Conclusion 

In this study, we assumed that  Ω  is open and bounded. We investigated the 
convergence of the p-harmonic functions when the boundary values vary. Moreover, 
we considered an increasing sequence of open sets and analyzed the convergence of 
the corresponding p-harmonic functions.    

The findings showed that the uniform limit of p-harmonic functions is also p-
harmonic.  Moreover, when the boundary values converge in the 𝑁𝑁1,𝑝𝑝(Ω) space, then 
the corresponding p-harmonic functions converges locally uniformly in  Ω.  As for the 
boundary regularity, the study showed  that for 𝑓𝑓 ∈ 𝐶𝐶(𝜕𝜕Ω)  the  p-harmonic extension 
is the unique bounded  p-harmonic function that attains the boundary values at all 
regular points.  

For future study, we recommend to study the  p-harmonic functions in unbounded and 
non-open  sets. Moreover, for the convergence problems, we recommend studying the 
convergence of  the p-harmonic functions in the Newtonian space and under what 
conditions it would be obtained.  
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