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Abstract:
The purpose of this study is to test and compare two explicit numerical 

approaches, the conditionally stable forward time central space FTCS and 
unconditionally stable Saulyev’s method, for solving parabolic equations 
with a nonlocal boundary condition using different step sizes of time . 
These methods are based on finite different schemes. All computations are 
carried out using mathematica wolfram 8.0 software.

We have employed these numerical schemes to show the accuracy of their 
solutions and since they are explicit, their results are compared. The stability 
of these numerical schemes is also discussed.

It should be noted that FTCS method is closer to the exact solution so long 
as  in comparison with Saulyev’s method. On contrary the Saulyev’s 
method is more stable and gives a good approximation in case  .

Keywords: Finite difference method; Saulyev’s method; nonlocal boundary 
condition; Stability;

الملخص:

الهدف من هذه الدراسة إختبار ومقارنة طريقتان من الطرق العددية الصريحة وهي 
طريقة الفروق الأمامية للزمن والمركزية للمسافة FTCS والتي تكون مستقرة بشروط وطريقة 
ساولوفي والتي تكون مستقرة بدون شروط لحل المعادلات الجزئية المكافئة مع الشرط غير 
. هذه الطرق مبنية على طريقة  المحلي باستعمال أحجام مختلفة من الخطوات للزمن 
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الفروق المنتهية. كل العمليات الحسابية تم تنفيذها باستخدام برنامج الماتيماتيكا وولفرام 
.8.0

طرقاً  ولكونهما  الحلول،   في  الدقة  لمعرفة  العددية  الطرق  من  النوع  هذا  دراس��ة  تم 
صريحة تمت المقارنة بين نتائجهما ومناقشة استقرارهما. 

من خلال النتائج يمكننا التوصل إلى أن طريقة ال FTCS تكون قريبة في نتائجها من 
الحل النظري بشرط  بالمقارنة مع طريقة ساولوفي . في المقابل نجد أن طريقة 

. ساولوفي مستقرة بدون شروط وتعطي نتائج جيدة في حالة 

غير  الحدية  الشروط  ساولوف،  طريقة  المنتهية،   الفروق  طريقة  المفتاحية:  الكلمات 
المحلية، الإستقرار.

1. Introduction

Many physical phenomena are formulated by nonclassical parabolic 
initial-boundary value problems in one space variable which involve an 
integral term over the spatial domain of a function of the desired solution. 
This integral term may appear in a boundary condition, in which case the 
boundary condition is called nonlocal (Dehghan, 2005).

1.1 Parabolic equation with nonlocal boundary condition

 Let consider one form of this equation which in the following 

Subject to the initial condition

the boundary condition

 and the nonlocal boundary condition

where  and are known, while the function  is to be determined 
(Dehghan,2001).
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2. Schemes for the parabolic equation with nonlocal boundary condition.

 In this section we obtain some finite difference approximation schemes 
that can solve parabolic equations of the kind (1-4).

2.1 Forward Time Central Space (FTCS) method.

Forward time and central space can be obtained by replacing the time 
derivative with a forward difference and the second spatial derivative with a 
central difference and negligent the truncation errors, we get

 
Substituting the above equations into (1), then the forward time central space 
scheme can be written as 

2.2 Saulyev’s method

To quote from (Jie Sun, 2008), the first derivative in time and the second 
derivative in space of the function value can be written as 



32

AL-JAMEAI -Issue 35 - Spring  2022

Hence, the above equation can be written in the following form 

Similarly we can obtain 

Putting =1 in equation (11) and (12), we obtain Saulyev’s scheme 
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2.2.1 Saulyev’s first kind formula

According to Dehghan (2005), Saulyev’s scheme has two kinds: first and 
second kind formula. The explicit formula can be obtained from equation (13) 
in the following form

2.2.2 Saulyev’s second kind formula

The explicit Saulyev’s second kind formula can be obtained from equation 
(14) as

3. Treatment of the nonlocal condition of the parabolic equation.
We consider the nonlocal condition from equation (4) by Simpson’s one-

third rule; we use this formula due to a higher order of its truncation error. 
According to Rao (2006), Simpson’s one-third rule formula can be written as
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The error committed in Simpson’s one-third rule is given by 

Applying Simpson’s one-third rule formula in equation (4) we obtain 

4. Consistency, Stability & Convergence 

In order for approximate solutions to converge to true solutions of PDE as 
step sizes in time and space go to zero, two conditions must be met:

_Consistency:- which means that local truncation error goes to zero as 
step sizes go to zero (i.e. discrete problem approximates right continuous 
problem).

_stability:- which essentially means that approximate solution remains 
bounded.

In general, a numerical procedure is unstable if errors introduced into the 
calculations grow at an exponential rate as the computation proceeds (Boyce, 
1977).

Lax equivalence theorem says that consistency and stability are together 
necessary and sufficient for convergence. Neither condition a lone is sufficient 
to guarantee convergence.

Hence we call the forward - difference method conditional stable and remark 
that the method converges to the solution of the parabolic equation. This severe 
restriction on time step makes explicit method relatively inefficient compared to 
Saulyev’s method, although it has the same order of convergence. 
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Dehghan (2005) pointed out that the Saulyev’s procedures are very simple 
to implement and this method is explicit as well as unconditionally stable, 
although the standard fully explicit schemes have restriction on stability and 
are only useful over small time steps.

5. Numerical Experiments 

In this section, we present some numerical results to confirm our theoretical 
analysis.

Example 1. Let us consider the equations (1-4) with

We perform two explicit numerical schemes and compare the exact solution 
of the equation above with different step sizes of time .

Simpson’s rule is used to get,  from the nonlocal condition 
at each method.

5.1 Forward Time Central Space Method

Table (1): results of FTCS Scheme for with 
Value of FTCS Scheme Exact Solution Relative Error

0.0 0.99995 .99998 2.0706×10-5

0.1 1.10512 1.10517 2.0706×10-5

0.2 1.22135 1.22141 2.0706×10-5

0.3 1.3498 1.34986 2.0706×10-5
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Value of FTCS Scheme Exact Solution Relative Error
0.4 1.49176 1.49182 2.0706×10-5

0.5 1.64865 1.64872 2.0706×10-5

0.6 1.82204 1.82212 2.0706×10-5

0.7 2.01366 2.01375 2.0706×10-5

0.8 2.22544 2.22554 2.0706×10-5

0.9 2.45949 2.4596 2.0706×10-5

1.0 2.71821 2.71821 0000

Figure (1): FTCS method and exact solution at  

Figure (2): Error curve of FTCS method 
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Table (2) and Figure (3) illustrate the comparison between the result of 
FTCS method and the exact solution at 

Table (2): results of FTCS Scheme for 

Value of FTCS Scheme Exact Solution Relative Error

0.0 0.99987 0.9999 3.1395×10-5

0.1 1.10526 1.10506 1.8360×10-4

0.2 1.22123 1.22128 4.1259×10-5

0.3 1.34967 1.34972 4.1259×10-5

0.4 1.49161 1.49168 4.1259×10-5

0.5 1.64849 1.64856 4.1259×10-5

0.6 1.82186 1.82194 4.1259×10-5

0.7 2.01347 2.01355 4.1259×10-5

0.8 2.22523 2.22532 4.1259×10-5

0.9 2.45928 2.45936 2.9817×10-5

1.0 2.71801 2.71801 0.0000

Figure (3): FTCS method and exact solution at 
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Figure (4): Error curve of FTCS method at 

Figure (5): solutions of FTCS method in three dimension.
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Table (3) and Figure (6) are shown the comparison between the result of 
FTCS method and the exact solution at 

Table (3): results of FTCS Scheme for 

Value of FTCS Scheme Exact Solution Relative Error

0.0 -5.63275 0.993641 6.6688

0.1 2.90981 1.09814 1.64975

0.2  0.767782 1.21364 3.6737×10-1

0.3 1.4132 1.34127 5.3624×10-2

0.4 1.48021 1.48234 1.4367×10-3

0.5 1.63588 1.63824 1.4367×10-3

0.6 1.80793 1.81053 1.4367×10-3

0.7 2.00622 2.00095 2.6372×10-3

0.8 2.19179 2.21139 8.8616×10-3

0.9 2.46082 2.44396 6.8975×10-3

1.0 2.701 2.701 0.0000

Figure (6): FTCS method and exact solution    
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Figure (7): Error curve of FTCS method at 

As we can see from the results, forward time central space gave a good 
approximation of equation (1) in each different step size which is noticed 

from the relative errors in the Tables (1), (2) and Figures (1)-(5).

According to the solution in Table (3), Figure (6) and Figure (7) the unstable 
behaviour is made apparent because the value of  for this simulation. An 
 value that is significantly higher than the stability limit of 0.5.

5.2 Saulyev’s Method

In this section we perform the Saulyev’s second kind formula to solve the 
equation (1) for , and Simpson’s rule to get ,  Table 
(4) and Figure (8) are shown the comparison between the result of Saulyev’s 
method and the exact solution at .
Table (4): results of Saulyev’s Scheme for 

Value of Saulyev’s Scheme Exact Solution Relative Error

0.0 0.99995 0.99998 2.3241×10-5

0.1 1.10512 1.10517 2.3240×10-5
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Value of Saulyev’s Scheme Exact Solution Relative Error

0.2 1.22134 1.22141 2.3235×10-5

0.3 1.34979 1.34986 2.3221×10-5

0.4 1.49175 1.49182 2.3184×10-5

0.5 1.64864 1.64872 2.3085×10-5

0.6 1.82203 1.82212 2.2814×10-5

0.7 2.01366 2.01375 2.2808×10-5

0.8 2.22544 2.22554 2.0088×10-5

0.9 2.45951 2.4596 1.4680×10-5

1.0 2.71821 2.71821 0.0000

Figure (8): Saulyev’s method and exact solution at 
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Figure (9): Error curve of Saulyev’s method at 
Table (5) and Figure (10) represent the comparison between the solution 
of Saulyev’s method and the exact solution  , and 

. Further, the three dimensional solution is illustrated in Figure (12) 
at 

Table (5): results of Saulyev’s Scheme for

Value of Saulyev’s Scheme Exact Solution Relative Error

0.0 1.0003 0.9999 3.9607×10-4

0.1 1.10519 1.10506 1.1904×10-4

0.2 1.22122 1.22128 4.9069×10-5

0.3 1.34966 1.34972 4.9001×10-5

0.4 1.4916 1.49168 4.8836×10-5

0.5 1.64848 1.64856 4.8430×10-5

0.6 1.82185 1.82194 4.7448×10-5

0.7 2.01346 2.01355 4.5108×10-5

0.8 2.22523 2.22532 3.9644×10-5

0.9 2.45929 2.45936 2.7215×10-5

1.0 2.71801 2.71801 0.0000
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Figure (10): Saulyev’s method and exact solution 

Figure (11): Error curve of Saulyev’s method at 
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Figure (12): solutions of Saulyev’s method in three dimension.

The comparison between the result of Saulyev’s method and the exact 
solution are displayed in Table (6) and Figure (13)  , and 
. The error curves are plotted in Figures (9), (11) and (14) at different 
step sizes.

Table (6): results of Saulyev’s Scheme 

Value of Saulyev’s Scheme Exact Solution Relative Error

0.0 0.92426 0.993641 6.9829×10-2

0.1 1.12462 1.09814 2.4109×10-2

0.2 1.20895 1.21364 3.8583×10-3

0.3 1.34116 1.34127 8.5892×10-5

0.4 1.4785 1.48234 2.5860×10-3

0.5 1.6344 1.63824 2.3413×10-3

0.6 1.80684 1.81053 2.0400×10-3
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Value of Saulyev’s Scheme Exact Solution Relative Error

0.7 1.9976 2.00095 1.6703×10-3

0.8 2.20869 2.21139 1.2183×10-3

0.9 2.44233 2.44396 6.6779×10-4

1.0 2.71801 2.71801 0.0000

Figure (13): Saulyev’s method and exact solution at ,

Figure (14): Error curve of Saulyev’s method at  
Obviously, the solutions in Tables (4) and (5) are closed to the exact solutions. 
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Although these methods are explicit but forward time central space is better 
than Saulyev’s method as long as it is falling under the condition . In 
the other hand, Saulyev’s method gave a good approximation of the exact 
solution at,   , as shown in Table 
(6) and Figure (13). The reason is that, this scheme is unconditionally stable. 

6. Conclusion 
In this paper we have presented two numerical methods which are forward time 

central space (FTCS) and Saulyev’s method for solving parabolic equation with 
nonlocal condition. Those methods are explicit and simple for implementation, 
due to the value of  can be updated independently of each other.

The entire solution is contained in two loops: an outer loop over all time 
steps, and an inner loop over all interior nodes. FTCS method is an applicable 
technique and approximates the exact solution for the giving problem very 
well, compared with the Saulyev’s method, but the disadvantage of FTCS 
method is that  and  must be chosen to satisfy  to be stable. In 
contrary, Saulyev’s method has no condition for stability. 

Numerical experimental work showed us that, FTCS method is a preferable 
because the results are close to the exact solution, but behave badly as  becomes 
large than the condition limit, while Saulyev’s method gives a good agreement 
for that limit. The error decreases with small value of  and increases as  made 
time error. Therefore, both of these methods are complementary. In particular, the 
choosing of these methods depend on the problem, if it requires that  and  satisfy 
the stability condition  , then for this case we should use FTCS method. 
However, Saulyev’s scheme is still useful for other problems. 
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