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Abstract:

The purpose of this study is to test and compare two explicit numerical
approaches, the conditionally stable forward time central space FTCS and
unconditionally stable Saulyev’s method, for solving parabolic equations
with a nonlocal boundary condition using different step sizes of time ().
These methods are based on finite different schemes. All computations are
carried out using mathematica wolfram 8.0 software.

We have employed these numerical schemes to show the accuracy of their
solutions and since they are explicit, their results are compared. The stability
of these numerical schemes is also discussed.

It should be noted that FTCS method is closer to the exact solution so long
as 7 < 0.5 in comparison with Saulyev’s method. On contrary the Saulyev’s
method is more stable and gives a good approximation in case r > 0.5..

Keywords: Finite difference method; Saulyev’s method; nonlocal boundary
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1. Introduction

Many physical phenomena are formulated by nonclassical parabolic
initial-boundary value problems in one space variable which involve an
integral term over the spatial domain of a function of the desired solution.
This integral term may appear in a boundary condition, in which case the
boundary condition is called nonlocal (Dehghan, 2005).

1.1 Parabolic equation with nonlocal boundary condition
Let consider one form of this equation which in the following
g—?(x,t) ZZ(x t) + s(x,t), 0<x<L,x>0. (1)
Subject to the initial condition

u(x,0) = f(x), 0<x<1L, (2)

the boundary condition
u(l,t) = g(t), 0<t<T, (3)

and the nonlocal boundary condition
Jobu(x,t)dx=m(t), O0<t<T, 0<b<1, 4

where f19:b,S and are known, while the function u is to be determined
(Dehghan,2001).
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2. Schemes for the parabolic equation with nonlocal boundary condition.

In this section we obtain some finite difference approximation schemes
that can solve parabolic equations of the kind (1-4).

To develop a finite difference method we need to introduce grid
points, let N and M be positive integers, and & = Ax, k = At, h= %,

k = % Define the partition points x; = i p, i =0,1,...N, t; = jk,

j=01,..M.

A point of the form (x;, t;) is called a grid point and we are interested in

computing approximate solution values at the grid points (Han, 2005).
j ’
i

2.1 Forward Time Central Space (FTCS) method.

The notation u; is use for an approximation to u{ = u(x;, tj) .

Forward time and central space can be obtained by replacing the time
derivative with a forward difference and the second spatial derivative with a
central difference and negligent the truncation errors, we get

i JH1_ . J j J¥1_ g
u J _ Y Uy and 0%u _ Y 2up+uy_, 5)
atl; k ox21; h2 :

Substituting the above equations into (1), then the forward time central space
scheme can be written as

J+1i_ . j j+1 Jo ., .
up -up Uy - Zui+ Uj_q j
p = = + s/, (6)
or
J+1 _ Jj Jj j Jj
u; = 7‘(ui+1 + ui_l) + (1= 2r)u; + ks;, (7)

j+1 C g j
i explicitly in terms of u; .
j+
i

k .
where 1 = R Equation (7) expresses u

The method is thus an explicit method and the unknown u ! can be

directly determined if u{ is known (Yau, 1994).

2.2 Saulyev’s method

To quote from (Jie Sun, 2008), the first derivative in time and the second
derivative in space of the function value can be written as
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auj uj+1—uj
e il Y
o - (k),
j j j
azu{ _ 1 Ui, (1/2) _ 0Uj_(1/) + olh 2)
0x2 h 0x ox ’
Applying
j j+1 .
au{_'_(l/z) B au{+(1,2) 0%u(i+ (1/2),t;+6k)
= -k , 0<6<1.
ox ox oxadt

Applying (8-10) in equation (1), we get

j+1 j j+1 Jj Jj J
u{ _u{:E Uy (1/2) _ 0U;_(1/2) +1—a Uiy (1/2) _ 0Uj_(1/2) +S'
k h ox ox h ox 0x i
k 0%u(i+ (1/2),t;+0k)
- a- ! +olk+ 7%, O0<acs<.
h dxadt

Hence, the above equation can be written in the following form

j+1
U; U @ i1

j+1
u]

el ) Jj
& = 2\ Ui T ui+ui—1)

J

1—ar j J J J
Y (ulp—u/-u/+ul )+ s/

Similarly we can obtain
j+1

Uu; Uu;

k

a . . . .
IO R B E5 SR
= hz(ui+1 Wi—u Uy

]

1-a/ j J J j
t 02 (ulp—u/—w+ u_) + 5.

Putting =1 in equation (11) and (12), we obtain Saulyev’s scheme

j+1 JHL _ q oy d J j
M+ r)u;" —ru 2 = (1-1)u; + ru, + ks;,
- - . . .
(T+nw™ —ru]] = (=-nu + rul_ + ks/,

k
where r = —.
h2
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2.2.1 Saulyev’s first kind formula

According to Dehghan (2005), Saulyev’s scheme has two kinds: first and
second kind formula. The explicit formula can be obtained from equation (13)
in the following form
j+1_ 1 j+1
i T e T4ie

+ (1=rul + rul, | + ks/]. (15)

u i+1

Fori=12,..N-2,N-1.

This formula is used in case of that ulj *1 is known and u,]\',Jr1 is unknown.
This means that we first put i = 1 and theni = 2,...and finally i = N —
1 (Dehghan, 2005).

2.2.2 Saulyev’s second kind formula

The explicit Saulyev’s second kind formula can be obtained from equation
(14) as
jr1_ 1

U =l

j+1

i1t (1—r)u{ + rulj_1 + ksij. (16)

Fori= N-1,N-2,...,2,1.

This formula is used in case of that ulj *1 is unknown and ulj\,Jr1 1s known.
This means that we first put i= N—-1 and theni= N - 2,...and
finally i = 1 (Dehghan, 2005).

3. Treatment of the nonlocal condition of the parabolic equation.

We consider the nonlocal condition from equation (4) by Simpson’s one-
third rule; we use this formula due to a higher order of its truncation error.
According to Rao (2006), Simpson’s one-third rule formula can be written as

b
j u(x)dx = g[u(xo) + 4u(xq) + ..+ 2u(xy_y) + du(xy_q)

+u(xy)]
T ulgog) + 2572 ulg) + ulxy) |, (17)
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The error committed in Simpson’s one-third rule is given by
~ ihs v _ (b—a)® iv
Ex~—ge 7€) = = 5o [76), (18)

where a = x5 < £ < x, = b (for N subintervals of length 7).
Applying Simpson’s one-third rule formula in equation (4) we obtain

; ho j+1 1 1 1
m/* = Sy T a4 20t h o ut (19)
Hence
' 1 1 1 1
mitt = 2 fyl* +4Z2 ué:r1+ 222 ué:r +ul. (20)

4. Consistency, Stability & Convergence

In order for approximate solutions to converge to true solutions of PDE as
step sizes in time and space go to zero, two conditions must be met:

_Consistency:- which means that local truncation error goes to zero as
step sizes go to zero (i.e. discrete problem approximates right continuous
problem).

_stability:- which essentially means that approximate solution remains
bounded.

In general, a numerical procedure is unstable if errors introduced into the

calculations grow at an exponential rate as the computation proceeds (Boyce,
1977).

Lax equivalence theorem says that consistency and stability are together
necessary and sufficient for convergence. Neither condition a lone is sufficient
to guarantee convergence.

In the forward method with o(k + #?) of convergence, the stability
will occur only if 0 < r < 0.5 Sincer = %, this inequality requires

that z2and k must be chosen so that % < 0.5.
Hence we call the forward - difference method conditional stable and remark
that the method converges to the solution of the parabolic equation. This severe

restriction on time step makes explicit method relatively inefficient compared to
Saulyev’s method, although it has the same order of convergence.
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Dehghan (2005) pointed out that the Saulyev’s procedures are very simple
to implement and this method is explicit as well as unconditionally stable,
although the standard fully explicit schemes have restriction on stability and
are only useful over small time steps.

5. Numerical Experiments

In this section, we present some numerical results to confirm our theoretical
analysis.

Example 1. Let us consider the equations (1-4) with
e

_ X _ _
fl) =e*, g(t) ==, b=06,
_e%—q _ —(1+t)%e*

m(t) = Tz s(x, t) = BTETOITE € (0,1) andt € (0,T1,

which is easily seen to have the exact solution (Dehghan ,2005):

ex

1+t2° (21)

We perform two explicit numerical schemes and compare the exact solution
of the equation above with different step sizes of time t.

u(x, t) =

Simpson’sruleis used to get,u(0,t), t € (0, T]from the nonlocal condition
at each method.

5.1 Forward Time Central Space Method

We have applied FTCS method to solve the equation (1) for x€
(0,1), and Simpson'’s rule for solving u(0,t), t € (0, T].

The numerical result of FTCS method are obtained and compared with
the exact solution at 4 = 0.1, k= 0.005 and t = 0.005 as shown in
Table (1) and Figure (1).

Table (1): results of FTCS Scheme for with 2= 0.1, k = 0.005 and t = 0.005.

Value of | FTCS Scheme | Exact Solution | Relative Error
0.0 0.99995 99998 2.0706x10°°
0.1 1.10512 1.10517 2.0706x10°°
0.2 1.22135 1.22141 2.0706x10
0.3 1.3498 1.34986 2.0706x10°
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Value of | FTCS Scheme | Exact Solution | Relative Error
0.4 1.49176 1.49182 2.0706x10°
0.5 1.64865 1.64872 2.0706x10°
0.6 1.82204 1.82212 2.0706x10°
0.7 2.01366 2.01375 2.0706x10°
0.8 2.22544 2.22554 2.0706x10
0.9 2.45949 2.4596 2.0706x10°
1.0 2.71821 2.71821 0000
it
15| —  FTCS Schems
I —— Exart Solution
20}
L5
o1 0 s EXH o ¢

Figure (1): FTCS method and exact solution at 2= 0.1,k = 0.005 and t = 0.005.
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Figure (2): Error curve of FTCS method 2= 0.1, k = 0.005 and t = 0.005.
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Table (2) and Figure (3) illustrate the comparison between the result of
FTCS method and the exact solution at # = 0.1, k = 0.005 and ¢ =0.01.

Table (2): results of FTCS Scheme for #(¥,t) with h=0.1,k=0005andt = 001.

Value of FTCS Scheme | Exact Solution | Relative Error
0.0 0.99987 0.9999 3.1395x10°
0.1 1.10526 1.10506 1.8360x10*
0.2 1.22123 1.22128 4.1259x10°°
0.3 1.34967 1.34972 4.1259x10°
0.4 1.49161 1.49168 4.1259%107
0.5 1.64849 1.64856 4.1259x10°
0.6 1.82186 1.82194 4.1259x10°°
0.7 2.01347 2.01355 4.1259x10°
0.8 2.22523 2.22532 4.1259x10°°
0.9 2.45928 2.45936 2.9817x107
1.0 2.71801 2.71801 0.0000

B0
2. —— FTCS Schems

Exact Solution

R TS T U S T
0.2 0.4 0.6 0.8 1.0

Figure (3): FTCS method and exact solution at #= 0.1, k = 0.005 and ¢t = 0.01.

37



AL- JAME ' A I -Issue 35 - Spring 2022

pooozo T T 4 T T T ]
000015 [ ]
E 0.00010 | i

0.00005 [ ]

1.0

Figure (5): solutions of FTCS method in three dimension.
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Table (3) and Figure (6) are shown the comparison between the result of
FTCS method and the exact solution at 2= 0.1, k = 0.02 and t = 0.08.

Table (3): results of FTCS Scheme for u(x,t) with h=0.1,k=0.02and t = 0.08.

Value of FTCS Scheme | Exact Solution Relative Error
0.0 -5.63275 0.993641 6.6688
0.1 2.90981 1.09814 1.64975
0.2 0.767782 1.21364 3.6737x10"
0.3 1.4132 1.34127 5.3624x107
0.4 1.48021 1.48234 1.4367x1073
0.5 1.63588 1.63824 1.4367x1073
0.6 1.80793 1.81053 1.4367x107
0.7 2.00622 2.00095 2.6372x1073
0.8 2.19179 2.21139 8.8616x1073
09 2.46082 2.44396 6.8975x1073
1.0 2.701 2.701 0.0000

r(x,1)
3.0 \
2 A
[\
20 |\
[
L3 [ = FTCS Schems
1.0 ___lljﬂ_-__l'ﬂx / ——— Exact Solution
0.5
|
|! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 :
| 0.2 0.4 0.6 0.E 10
05k |

Figure (6): FTCS method and exact solution = 0.1, k = 0.02 and t = 0.08.
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Figure (7): Error curve of FTCS method at h= 0.1,k = 0.02andt = 0.08.

As we can see from the results, forward time central space gave a good
approximation of equation (1) in each different step size which is noticed
from the relative errors in the Tables (1), (2) and Figures (1)-(5).

According to the solution in Table (3), Figure (6) and Figure (7) the unstable
behaviour is made apparent because the value of r = 2 for this simulation. An
r value that is significantly higher than the stability limit of 0.5.

5.2 Saulyev’s Method
In this section we perform the Saulyev’s second kind formula to solve the
equation (1) for x 4 (0,1), and Simpson’s rule to get (0,t), t & (0,T]. Table

(4) and Figure (8) are shown the comparison between the result of Saulyev’s
method and the exact solution at 2= 0.1, k =0.005and t = 0.005..,

Table (4): results of Saulyev’s Scheme for t(x, t) with 2= 0.1, k = 0.005 and t =0.005.
Value of

Saulyev’s Scheme

Exact Solution

Relative Error

0.0

0.99995

0.99998

2.3241x10°

0.1

1.10512

1.10517

2.3240%x10°
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Value of Saulyev’s Scheme Exact Solution | Relative Error
0.2 1.22134 1.22141 2.3235x10°
0.3 1.34979 1.34986 2.3221x10°
0.4 1.49175 1.49182 2.3184x10°
0.5 1.64864 1.64872 2.3085%107
0.6 1.82203 1.82212 2.2814x10°
0.7 2.01366 2.01375 2.2808%107
0.8 2.22544 2.22554 2.0088x107
0.9 2.45951 2.4596 1.4680x10°
1.0 2.71821 2.71821 0.0000

zx.t)

— Sznlyev’ 5 Schems

[o=]

Ln

—— Exact Solution

1 1 1 L 1 1 1 L 1 1 1 1 1 x
0.2 0.4 0.6 0.8 1.0

Figure (8): Saulyev’s method and exact solution at = 0.1, k = 0.005 and t = 0.005.
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Figure (9): Error curve of Saulyev’s method at 2= 0.1, k = 0.005 and t = 0.005.

Table (5) and Figure (10) represent the comparison between the solution
of Saulyev’s method and the exact solution at 2= 0.1, k = 0.005 and

t = 0.01. Further, the three dimensional solution is illustrated in Figure (12)

ath= 0.1,k = 0.005 and t = 0.01.

Table (5): results of Saulyev’s Scheme for(x, t) with 4= 0.1, k = 0.005 and t =0.01.

Value of | Saulyev’s Scheme Exact Solution Relative Error
0.0 1.0003 0.9999 3.9607x10*
0.1 1.10519 1.10506 1.1904x10*
0.2 1.22122 1.22128 4.9069%10°
0.3 1.34966 1.34972 4.9001x107
0.4 1.4916 1.49168 4.8836x107
0.5 1.64848 1.64856 4.8430x10°
0.6 1.82185 1.82194 4.7448%10°
0.7 2.01346 2.01355 4.5108x107
0.8 2.22523 2.22532 3.9644x10°
0.9 2.45929 2.45936 2.7215%10°
1.0 2.71801 2.71801 0.0000
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rx.t)

(o]

Ln
T

— Sanlysve” 5 Schemes

—— Exact Solution

04

0.0004

0.6

0.8
Figure (10): Saulyev’s method and exact solution 2= 0.1, k = 0.005 and t = 0.01
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EITOT
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0.0001 | \ I ]

N — ~ ]

-3.-:*:*:*:-:,.|,,,,,,,,,.......\:
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X

Figure (11): Error curve of Saulyev’s method at 2= 0.1, k = 0.005 and t = 0.01.
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Figure (12): solutions of Saulyev’s method in three dimension.

The comparison between the result of Saulyev’s method and the exact
solution are displayed in Table (6) and Figure (13)at 2z = 0.1, k = 0.02  and
.t = 0.08.The error curves are plotted in Figures (9), (11) and (14) at different
step sizes.

Table (6): results of Saulyev’s Scheme for u(x,t) with 2= 0.1, k = 0.02 and t =0.08.

Value of |Saulyev’s Scheme | Exact Solution Relative Error
0.0 0.92426 0.993641 6.9829x10
0.1 1.12462 1.09814 2.4109%10
0.2 1.20895 1.21364 3.8583x107
0.3 1.34116 1.34127 8.5892x10°
0.4 1.4785 1.48234 2.5860%107
0.5 1.6344 1.63824 2.3413x10°
0.6 1.80684 1.81053 2.0400%x107
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Value of |Saulyev’s Scheme | Exact Solution Relative Error
0.7 1.9976 2.00095 1.6703x10
0.8 2.20869 2.21139 1.2183x107
0.9 2.44233 2.44396 6.6779%10*
1.0 2.71801 2.71801 0.0000

zix.t)
135k —— Ssulyev” 5 Schema
—s—Exact Solwtion
201
1:F
I :—'?’}l-.;? " 1 " L 1 1 1 " 1 1 1 " L L 1 x
- 0.2 0.4 0.6 0.2 1.0
Figure (13): Saulyev’s method and exact solution at J1=0.1,k=002andt= 0.08.
0.07F T T E
E ]
oosf | .
E ]
005F ) 1
Y ]

= 0.04 n IlII ]

E b :
0.03 2 '-H E
001 | \ ]
0.00 :_l L \l\\:-\--\-:ﬂ-‘-ﬂ:‘--- 1 1 . _I_ ____l__l_:

0.0 0.2 0.4 0.6 [ 1.0

Figure (14): Error curve of Saulyev’s method at £ = 0.1,k = 0.02 and t = 0.08.
Obviously, the solutions in Tables (4) and (5) are closed to the exact solutions.
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Although these methods are explicit but forward time central space is better
than Saulyev’s method as long as it is falling under the condition r < 0.5. In
the other hand, Saulyev’s method gave a good approximation of the exact
solutionat,” = 2, where 4= 0.1, k = 0.02and t = 0.08, a5 shown in Table

(6) and Figure (13). The reason is that, this scheme is unconditionally stable.

6. Conclusion

In this paper we have presented two numerical methods which are forward time
central space (FTCS) and Saulyev’s method for solving parabolic equation with
nonlocal condition. Those methods are explicit and simple for implementation,
due to the value of ul] *Tcan be updated independently of each other.

The entire solution is contained in two loops: an outer loop over all time
steps, and an inner loop over all interior nodes. FTCS method is an applicable
technique and approximates the exact solution for the giving problem very
well, compared with the Saulyev’s method, but the disadvantage of FTCS
method is that 7 and £ must be chosen to satisfy r < 0.5 to be stable. In
contrary, Saulyev’s method has no condition for stability.

Numerical experimental work showed us that, FTCS method is a preferable
because the results are close to the exact solution, but behave badly as r becomes
large than the condition limit, while Saulyev’s method gives a good agreement
for that limit. The error decreases with small value of k and increases as k made
time error. Therefore, both of these methods are complementary. In particular, the
choosing of these methods depend on the problem, if it requires that t and x satisfy
the stability condition 7 < 0.5, then for this case we should use FTCS method.
However, Saulyev’s scheme is still useful for other problems.
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