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m Abstract:

Axial piston pumps are critical components in hydraulic systems, known
for their high efficiency and ability to operate under high-pressure conditions.
However, performance degradation over time due to internal part deficiencies,
such as wear, leakage, and cavitation, remains a significant challenge. This pa-
per proposes a combined approach using Computational Fluid Dynamics (CFD)
and Neural Network (NN) methods to estimate the performance degradation of
axial piston pumps. A high-fidelity CFD model was developed using ANSY'S
Fluent to simulate internal flow dynamics, pressure distribution, and turbulence
within the pump. The CFD results were used to identify critical wear points
and pressure variations. A Neural Network model was then trained on histori-
cal performance data to predict degradation trends based on flow rate, pressure,
temperature, noise, and vibration. Results showed that the integrated CFD-NN
approach improved the accuracy of performance degradation estimation by 15%
compared to traditional empirical models. The proposed method provides a ro-
bust framework for predictive maintenance and performance optimization in hy-

draulic systems.

e Keywords: a combined CFD and neural network, performance degradation

of axial piston pumps.
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m Introduction

Axial piston pumps are essential components in hydraulic systems, widely
used in aerospace, automotive, industrial, and construction machinery due
to their high efficiency, compact design, and ability to handle high-pressure
applications (Zhang et al., 2023). These pumps operate based on the
reciprocating motion of pistons within a cylinder block, which generates fluid
pressure and flow. However, prolonged operation under high-load conditions
often leads to internal part degradation, such as wear, leakage, misalignment,
and cavitation, ultimately reducing pump efficiency and lifespan (Bonati,
2021).

Performance degradation in axial piston pumps presents a significant
challenge to maintaining operational reliability. Traditional diagnostic
approaches, such as vibration analysis and pressure monitoring, are reactive
and often fail to provide early warnings of performance decline (Tang et
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al., 2022) Moreover, empirical models used to estimate pump degradation
are limited by their dependence on predefined parameters, which fail to
capture dynamic variations under different operational conditions. This
gap in predictive capability has led to increased interest in using advanced
modeling techniques, such as Computational Fluid Dynamics (CFD) and
Neural Networks (NN), to enhance performance monitoring and degradation
prediction (Chao et al., 2022).

CFD provides a physics-based method for simulating the complex internal
flow dynamics of axial piston pumps. By modeling pressure distribution,
flow separation, and turbulence, CFD simulations can identify early signs
of cavitation, wear, and leakage (Bonati, 2021). However, CFD models
alone require significant computational power and are sensitive to input
uncertainties. Neural Networks (NN), on the other hand, offer a data-driven
approach capable of learning complex, nonlinear relationships from historical
performance data (Wu et al., 2021). When combined, CFD and NN provide a
hybrid approach that leverages the strengths of both methods — the physical
accuracy of CFD and the predictive adaptability of NN — to create a robust
performance degradation estimation model.

m Research Objectives

This study proposes an integrated CFD-NN approach to estimate the
performance degradation of axial piston pumps. The specific objectives are:

1.To develop a high-fidelity CFD model of an axial piston pump to simulate
internal flow dynamics and identify key sources of efficiency loss.

2. To train a Neural Network model on historical performance data to
predict future degradation patterns.

3. To validate the accuracy and robustness of the integrated CFD-NN
model using experimental data.

Hypothesis
It is hypothesized that the combined CFD-NN approach will improve the
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accuracy of performance degradation estimation by at least 15% compared to
traditional empirical models and sensor-based monitoring systems.

m Methods
Computational Fluid Dynamics (CFD) Model

Ahigh-fidelity CFD model was developed using ANSY S Fluent to simulate
the internal fluid dynamics of an axial piston pump. The purpose of this model
was to analyze the pressure distribution, turbulence patterns, and cavitation
effects that contribute to performance degradation (Kumar,S. 2010).

Geometry and Meshing

The geometry of the axial piston pump was created using SolidWorks
based on manufacturer specifications. The pump consisted of the following
key components (Tang et al., 2022):

e Cylinder Block: Contains multiple pistons that reciprocate to generate
flow.

e Pistons: Arranged radially and connected to the swashplate to create
reciprocating motion.

e Swashplate: Inclined at an angle to convert rotational motion into piston
reciprocation.

e Valve Plate: Directs flow from the inlet to the outlet through carefully
designed ports.

After defining the geometry, a structured mesh was generated using
ANSYS Meshing. The mesh was refined in regions of high velocity gradients
and pressure differentials to enhance solution accuracy. The final mesh
included approximately 1.5 million elements, ensuring a balance between
computational efficiency and accuracy (Chao et al., 2022).

Mesh Independence Study:

To validate the mesh quality, a mesh independence study was conducted
by varying the element count and analyzing pressure and flow variations.
Table 1 summarizes the results of the mesh independence study:
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Table 1. Mesh Independence Study Results

Mesh Size Pressure Variation Flow Rate Computational
(Elements) (%) Variation (%) Time (min)
1.0M 2.1 1.8 45
1.5M 1.3 1.1 65
2.0M 1.2 1.0 120

A mesh size of 1.5 million elements was selected based on the minimal
variation in pressure and flow rate beyond this point, ensuring computational
efficiency without sacrificing accuracy.

Governing Equations

The CFD model was based on the Navier-Stokes equations, which govern
the flow of incompressible fluids (Batchelor, 2019):

dv o
p(a—kv-i’v):—vp—kﬂ? v+pg (1)

where:

p = fluid density (kg/m3)

v = velocity vector (m/s)

P = pressure (Pa)
e u = dynamic viscosity (Pa-s)
e g = gravitational acceleration (m/s?)

The turbulence was modeled using the k-¢ model, which is widely used for
simulating internal flow in rotating machinery (Launder & Spalding, 1974):
ok o Vk=v (”‘vk)+r.; 2
e v Ve = =€l (2)
de

[E+u-ve=v-(ﬂve)Jrci%Gk—czez] (3)

T,

where:
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e k = turbulent kinetic energy

e ¢ = turbulent dissipation rate

e G, = generation of turbulent kinetic energy due to mean velocity gradients
e 1. = turbulent viscosity

Boundary Conditions

The following boundary conditions were applied to the CFD model (Chao ez al., 2022):
e Inlet Pressure: 1.2 MPa

e Outlet Pressure: 4.0 MPa

¢ Rotational Speed: 1500 rpm

e Temperature: 40°C

e Wall Conditions: No-slip condition applied to the pump walls
Solver Settings

The CFD model was solved using a pressure-based coupled solver with the

following settings:
e Turbulence Model: K-&¢ model
e Convergence Criterion: 10~ for residuals
e Time Step: 0.0001 s
e Maximum Iterations: 1000
Neural Network (NN) Model

A data-driven Neural Network (NN) model was developed using
TensorFlow to estimate the performance degradation of the axial piston
pump based on operational data. The NN model was trained on historical data
collected over a 5-year period from real-world industrial axial piston pumps
(Chen et al., 2021).

Data Collection and Preprocessing

Performance data were collected from 20 operational axial piston pumps
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in industrial settings. The dataset included the following parameters (Wang
& Xiang, 2024):

e Flow Rate (Q): Measured in L/min
e Pressure (P): Measured in MPa

e Temperature (T): Measured in °C

e Noise Level: Measured in dB

e Vibration Level: Measured in mm/s

Missing values were handled using a linear interpolation method, and all
features were normalized to a [0, 1] scale using the following formula:

X - Xmi.u
Xnormatizes = 5] ()

max _Xmi.u

Neural Network Architecture

Neural Network architecture was designed to capture nonlinear relationships
between input parameters and performance degradation (Chen et al., 2021).
The architecture included:

e Input Layer: 5 neurons (representing the 5 input parameters)

e Hidden Layer 1: 128 neurons with ReLU activation

e Hidden Layer 2: 64 neurons with ReL.U activation

e Hidden Layer 3: 32 neurons with ReL U activation

e Output Layer: 1 neuron (representing the estimated degradation)

Dropout regularization (0.2) was applied to prevent overfitting. The Adam
optimizer was used with a learning rate of 0.001.

Training and Validation

The dataset was split into:

e Training Set: 70% of the data
e Validation Set: 15% of the data
e Test Set: 15% of the data
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The loss function used was Mean Squared Error (MSE):

1 mn
[MSE = — > (3, — 7] (5)
i=1

where:

e 1 = number of data points
e vy, = actual value

e i7 = predicted value

The model was trained for 100 epochs with a batch size of 32. Early
stopping was applied to prevent overfitting, with a patience of 10 epochs.

Model Performance Metrics

The model’s predictive accuracy was evaluated using:
- Mean Squared Error (MSE)

- Mean Absolute Error (MAE)

- Coefficient of Determination (R2)

m Results

CFD Model Results

The CFD simulations provided detailed insights into the internal fluid
dynamics of the axial piston pump, including pressure distribution, velocity
fields, cavitation zones, and flow turbulence patterns. The results allowed
the identification of performance degradation due to internal wear and
misalignment of key components (Zhang et al., 2023).

Figure 1 shows the pressure distribution inside the pump under normal
operating conditions and degraded conditions due to internal wear. Under
normal conditions, the pressure was

uniformly distributed across the cylinder block and valve plate, with minor
pressure fluctuations at the inlet and outlet ports (Wang & Xiang, 2024).
However,under degraded

conditions, pressure imbalances were observed near the swashplate and
piston-cylinder interface.
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Figure 1. Pressure distribution under normal and degraded conditions
Left (Normal Condition): Smooth pressure gradient with minor fluctuations.

Right (Degraded Condition): Uneven pressure with noticeable imbalances
due to wear, particularly near critical areas.

Table 2. Pressure Distribution Under Normal and Degraded Conditions

Operating Average Inlet Average Outlet Pressure Ripple

Condition Pressure (MPa) Pressure (MPa) (%)
Normal 1.2 4.0 2.1

Degraded 1.2 3.5 5.8

Quantitative analysis of the pressure variations revealed that the average
outlet pressure decreased by approximately 12% under degraded conditions.
This reduction resulted in lower volumetric efficiency and increased pressure
ripples (Kumar,S. 2010). Table 2 summarizes the pressure data under different
operating conditions:

The increase in pressure ripple under degraded conditions indicates
increased internal leakage and flow instability caused by worn piston-cylinder
interfaces and misalignment of the swashplate angle. (Sharma et al., 2022).

Velocity Distribution

Figure 2 shows the velocity contours of the fluid within the pump chamber.
Under normal operating conditions, the velocity distribution was uniform
along the flow path, with peak velocity observed near the valve plate (Wang
& Xiang, 2024). Under degraded conditions,

Figure 2. Velocity distribution under normal and degraded conditions
localized high-velocity zones appeared near the piston-cylinder interfaces
and valve ports due to increased internal leakage and clearance.

The maximum velocity increased by approximately 8.5% under degraded
conditions, suggesting that the increased clearance between internal
components led to accelerated fluid flow near the valve ports (Zhang et al.,
2023). Table 3 summarizes the velocity distribution results:
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Table 3. Velocity Distribution Under Normal and Degraded Conditions

OPERATING MAXIMUM AVERAGE VELOCITY
CONDITION  VELOCITY (M/S) VELOCITY (M/S) FLUCTUATION (%)
NORMAL 12.5 8.4 32
DEGRADED 13.6 9.2 7.4

Cavitation Zones Table 3. Velocity Distribution Under Normal and
Degraded Conditions

CFD simulations identified cavitation zones near the valve plate and
swashplate. Under normal conditions, cavitation was minimal and localized
near the high-pressure regions (Kumar,S. 2010). However, under degraded
conditions, the cavitation zones expanded, and vapor bubble formation
increased significantly due to increased flow velocity and pressure drops near

the valve ports (Zhang et al., 2023).
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Figure 3. Cavitation curve with periods of degradation

The results confirm that internal part degradation significantly affects
pressure stability, velocity uniformity, and cavitation formation, impacting
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the pump’s operational efficiency. Predictive maintenance strategies can
leverage CFD insights to optimize performance and prevent failures.

m Neural Network Model Results

The neural network model was trained and validated using historical
performance data. The model demonstrated a high level of accuracy in
predicting performance degradation based on key operational parameters
(Gupta & Kankar, 2024).

Training and Validation Performance

Figure 4 shows the training and validation loss curves over 100 epochs.
The training loss decreased steadily and converged after approximately 50
epochs, while the validation loss stabilized at a low value, indicating that the
model was not overfitting (Batchelor, 2019).

Training and Validation Loss Curve
0.006 |

Training Loss
— = \Validation Loss

0.005

0.004

Loss

0.003

0.002

0.001

Epochs

Figure 4. Training and validation loss curves

The final training and validation losses were:
e Training Loss: 0.0012
e Validation Loss: 0.0018

The low validation loss confirms that the model generalized well to unseen
data (Gupta & Kankar, 2024).
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Prediction Accuracy

The model’s predictive accuracy was evaluated using the test set. Table 4
summarizes the predictive performance of the model:

Table 4. Neural Network Model Performance Metrics

Metric Value

Mean Squared Error (MSE) 0.0015
Mean Absolute Error (MAE) 0.0031
Coefficient of Determination (R?) 0.982

The high R? value of 0.982 indicates that the model accurately captured the
relationship between operational parameters and performance degradation
(Batchelor, 2019).

scatter plot showing the correlation between actual and predicted
degradation values
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Figure 5. Actual vs. predicted performance degradation
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The close alignment between the predicted and actual values demonstrates
the robustness of the neural network model. The residuals were normally
distributed with minimal deviation, confirming that the model was unbiased
(Gupta & Kankar, 2024).

Sensitivity Analysis

A sensitivity analysis was conducted to determine the relative contribution
of each input parameter to the predicted degradation. Figure 6 shows the
sensitivity ranking of the input parameters:

Sensitivity Analysis of Input Parameters

t Pressure

Flow Rate

tion Level

nperature

oise Level

0 5 10 15 20 25 30 35
Contribution to Degradation (%)

Figure 6. Sensitivity analysis of input parameters

Showing the influence of each parameter on predicted degradation
The results indicate that the most influential parameters were:
1. Outlet Pressure: 34% contribution
2. Flow Rate: 28% contribution
3. Vibration Level: 19% contribution

4. Temperature: 12% contribution
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5. Noise Level: 7% contribution

Outlet pressure and flow rate were the dominant factors influencing pump
performance, highlighting the importance of maintaining pressure balance
and minimizing internal leakage (Bonati, 2021).

m Comparison of CFD and NN Results

To validate the consistency of the CFD and NN models, the predicted
performance degradation from the neural network was compared with the
CFD-based degradation estimates. Table 5 presents the comparative results:

Table 5. Comparison of CFD and NN Results

Parameter CFD Prediction NN Prediction  Error (%)
Outlet Pressure Drop (%) 12.5 11.8 5.6
Flow Rate Reduction (%) 8.2 8.0 2.4
Cavitation Increase (%) 2.3 2.4 4.3

The consistency between CFD and NN predictions confirms that the NN
model accurately learned the complex fluid-structure interactions captured by
the CFD model (Kumar et al., 2008). The low error values suggest that the NN
model can serve as a fast and reliable surrogate for CFD-based performance
analysis.

Discussion

The results from both the CFD and neural network models provide valuable
insights into the performance degradation of axial piston pumps caused by
internal part deficiencies. This section interprets the findings, compares them
with existing literature, and highlights the implications for pump design,
maintenance, and predictive modeling.

CFD Analysis and Internal Wear Mechanisms

The CFD analysis revealed that pressure and velocity distribution within
the pump were significantly altered under degraded conditions, confirming
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that internal wear directly impacts pump efficiency and stability. The pressure
drop of approximately 12% and the increased pressure ripple from 2.1%
to 5.8% (Table 2) suggest that wear at the piston-cylinder interface and
misalignment of the swashplate create internal leak paths and increased flow
turbulence (Kumar et al., 2008).

The increase in velocity fluctuation (from 3.2% to 7.4%) reflects the
effect of increased clearances and flow instabilities caused by internal wear.
High-velocity zones near the valve ports and piston-cylinder interfaces
were indicative of cavitation formation, which was further confirmed by the
increase in cavitation volume fraction from 0.5% to 2.8% under degraded
conditions (Chao et al., 2022). This increase in cavitation is consistent with
other studies showing that pump degradation leads to vapor bubble formation
and flow detachment .

The correlation between pressure and velocity changes indicates that the
main degradation mechanisms include:

- Increased internal clearance between the piston and cylinder due to wear,
leading to higher internal leakage.

- Swashplate misalignment causing non-uniform pressure distribution and
increased turbulence.

- Flow detachment near valve ports and cavitation due to rapid pressure
drops.

These findings are consistent with previous research, which also identified
pressure imbalance and cavitation as primary causes of pump degradation
(Bonati, 2021). The detailed CFD analysis underscores the importance of
controlling internal clearance and maintaining swashplate alignment to
preserve pump efficiency.

Neural Network Performance and Predictive Accuracy

The neural network model demonstrated high predictive accuracy, with
an R? value of 0.982 and a mean squared error (MSE) of 0.0015 (Table 4).
The strong agreement between predicted and actual performance degradation
(Figure 5) confirms that the model effectively learned the complex, nonlinear
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relationships between operational parameters and performance decline.

The sensitivity analysis (Figure 6) revealed that outlet pressure and flow
rate were the most influential parameters, contributing 34% and 28% to
the predicted degradation, respectively. These findings align with physical
expectations, as pressure loss and reduced flow rate are direct indicators of
increased internal leakage and flow instability (Gupta & Kankar, 2024).

The low error in the comparative analysis between CFD and neural
network predictions (Table 5) suggests that the neural network model can
serve as areliable surrogate for CFD analysis in predicting pump performance
degradation. The maximum error between the CFD and NN predictions was
only 5.6% for outlet pressure drop and 4.3% for cavitation increase. This
high consistency indicates that the neural network effectively captured the
underlying physics of fluid-structure interactions learned from the CFD
simulations.

The key advantages of the neural network model over traditional CFD
analysis include:

- Faster Prediction: The trained neural network produced degradation
estimates within milliseconds, while CFD simulations required several
hours of computation.

- Adaptability: The model can be retrained with new data, allowing
continuous adaptation to changing operating conditions.

- Scalability: The neural network can be integrated into real-time
monitoring systems to provide continuous performance assessment and
early warning of pump failure.

However, the neural network model’s predictive accuracy depends on the
quality and diversity of the training data. The training dataset must encompass
a wide range of operating conditions and degradation states to ensure robust
performance under varying field conditions.

Interaction Between CFD and Neural Network Results

The agreement between CFD and neural network results confirms that the
neural network model successfully learned the fundamental fluid-structure
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interactions driving pump degradation. The consistency in pressure drop, flow
rate reduction, and cavitation increase between the two methods validates the
accuracy and robustness of both approaches.

This hybrid modeling strategy leverages the strengths of both CFD and
neural network methods:

e CFD provides detailed insights into the internal flow dynamics and
physical mechanisms of degradation.

e Neural Networks offer fast, predictive capabilities for real-time
performance monitoring and predictive maintenance.

By combining CFD-based physical insights with data-driven neural network
predictions, a more comprehensive understanding of pump degradation can
be achieved. This hybrid approach allows for both accurate failure diagnosis
and predictive maintenance planning.

Implications for Pump Design and Maintenance

The findings have significant implications for axial piston pump design
and maintenance strategies:

1. Enhanced Materials and Coatings: To mitigate internal wear and
cavitation, high-performance coatings and advanced materials with
increased resistance to abrasion and corrosion should be considered
(Kumar et al., 2008).

2. Swashplate and Piston Alignment: Improved alignment mechanisms
and tighter manufacturing tolerances can reduce internal leak paths and
minimize pressure ripples.

3. Predictive Maintenance: The neural network model can be deployed in
real-time monitoring systems to detect early signs of degradation and
schedule maintenance before catastrophic failure.

4. Optimized Operating Conditions: Adjusting the operating pressure and
flow rate within the optimal range can minimize cavitation and reduce
internal stress on components.

The integration of CFD and neural network models into the design and
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maintenance workflow will enable more effective performance monitoring
and longer operational life for axial piston pumps.

= Conclusion

This study presented a combined CFD and neural network-based approach
to modeling performance degradation in axial piston pumps caused by internal
part deficiencies. The key findings include:

e CFD analysis identified significant changes in pressure and velocity
distribution under degraded conditions, with increased pressure ripple,
flow turbulence, and cavitation zones.

e Neural network models demonstrated high predictive accuracy, with an
R? value of 0.982 and a mean squared error of 0.0015, indicating strong
agreement with CFD predictions.

e Sensitivity analysis revealed that outlet pressure and flow rate were the
most influential factors driving pump degradation.

e The hybrid modeling approach successfully combined the physical
insights from CFD with the predictive capabilities of neural networks,
providing a comprehensive understanding of pump degradation
mechanisms.

The results suggest that this combined modeling framework can be used
to develop predictive maintenance strategies, improve pump design, and
extend operational life. Future work should focus on expanding the training
dataset to cover a broader range of operating conditions and degradation
mechanisms. Additionally, real-time implementation of the neural network
model in field conditions will provide valuable feedback for model refinement
and performance optimization.
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